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Probabilistic modelling and ML...

many different flavors

start with dataD

think - Q1: How could the data have been generated?
source (model)

think - Q2: What interesting aspects in the data you'd like to capture?
This will also inform the model structure!
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The model...

Model (parametrized) p(D|w)

Or you may want to be smart and formulate the model in a fully Bayesian
framework -"parameter free’..

... but at some point there will mmeparameters (of prior), or you may
rely solely on hierarchical Bayes...
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Generative probabilistic model - advantages?

— principled formulation

— transparent and interpretable model structure
— principled model selection

— consistent coping with missing data

— consistent building of hierarchies
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Model structure and model fitting

Probabilistic modelling involvesvo main steps/tasks

1. Design thenodel structurdoy considering Q1 and Q2.

2. Fit your model to the data

— Sometimes the two tasks are interleaved -
e.g. when model fitting involves both parameters and modeltsii¢e.g.
Infinite mixtures...)
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Model structure and model fitting

Model fitting: ML, MAP, Type Il ML, full Bayesian treatment...

We will put more emphasis on task 1.

Experience the way probabilistic modelers in ML think -
examples of different data structures and different "questiorie@data".
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Start with the data... (simple example)
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Think: How could have this data been generated?
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Mixture models

Mixture of Gaussians

Given a set of data poin® = {x!,x?,...,x"}, coming from what looks
like a mixture of3 Gaussiangs|, Go, G3, fit a 3-component Gaussian
mixture model taD.

3 3

pO) =D P(.x) =) P()-p(X]j),

j=1
P(3) — mixing coefficient (prior probability) of Gaussia,
p(X|j) — ‘probability mass’ given to the data itexby Gaussiarts ;.

Generative processRepeat 2 steps

1. generatg from P(3)
2. generate from p(X|7)
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Fitting the model Is easy!
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It is fairly "obvious" which point comes from which Gaussian!
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Three Gaussians ...

Given that we know which data point comes from which Gausdhangs
are easy:

- Collectdatapoints fromD that areknown to be generated frotd; in D;.
- Estimate free parametefimean, covariance matrixf GG; (e.g. ML):

Do the same fofGaussiangs, andGs.

- P(j) - proportions of sizegD;|.
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Formulation through indicator variables

We can represent therowledge about which data point came from which
Gaussiarthroughindicator variables?, i = 1,2, ..., N (data points),
7 =1,2,3 (mixture components - Gaussians):

; = 1, iff X" was generated b ;
; = 0, otherwise.
Then,
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Now that you are an expert, model this...

000o0ps!
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The ground truth
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But how can | know that? ¥ou cannot!
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Don’t know values of the indicator variables...

The assignments of points to Gaussia}dare
hidden/latent/non-observable variables!

Collect all the indicator variables in@mpound\vector)latent variable
Z = {2} e {0,1}"°,

Each setting ofZ representsne particular situation of assigning poirxts
to Gaussianér{, Go andGs.

This can be anything from trivial settings, such as all pointsedom
(1, to very mixed situations.
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Probabilistic way of dealing with uncertain Z

Assume we already have some guess about where the Gaussialusisho
(11;) and what their shape 1&¢).

Since we don’t knowZ, we simplyneed to consider all possibilities
(casesjor assignments.

Obviously, looking at the datapot all assignment& will be equally likely.

This is expressed througlosteriorP (Z|D, G, G2, G3) that evaluates
how likely, given the data and current positions/shapes of Gaussians
G1,Gs, G3, Is the particular assignment schetie
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GuessingZ, given the current model and data

z; € {0, 1} is unobserved, so calculate its mean value instead -
"how muchz? wants to be set to 1”

Epz1p.G..Go.c)[25] = 0-P(25 =0/D,G1,G2,Gs)

+1 - P(Z; = HD, G1,Go, Gg)

= P(Z;:HD,Gl,GQ,Gg)
= R

R is the‘responsibility’ of Gaussiarj for the data poink’.

Substitutez;i In the crisp case calculations with ‘softer’ probabilisﬂ?.

Probabilistic Modelling in Machine Learning — p.16/126



Dealing with uncertainty in 4

Instead of
Z %
z 1 ] 1=1
we have
fij = ZRZ
Z’L lR; 1=1
Instead of
¥ = (X" — fiy) (X" = )"
] J
Zz 1 ] =1
we have
. 1 T
RS S Z;RZ (X" = i) (X' = ;)"
1= yi 1
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What next?

Having refined our model (positions and shapes of the Gaugsiafise

our ideas about possible assignmeiitsf pointsx® to Gaussians
G'1, G9, G3. Of course, we still cannot be certain about exact valugs of

sostill a probabilistic formulation!

Ri — P(G"Xi) _ P(XZ’G]) ) P(])
! ‘7 > =1 P(X|Gy) - P(q)

Repeat the parameter estimation and assignment refinemesusii
‘convergence’.
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Apply to our data - Iteration 1

_Plot of data and covariances
3 T T © T T T T
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Apply to our data - iteration 2

_Plot of data and covariances
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Apply to our data - iteration 30

_Plot of data and covariances
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Another latent variable model

Hidden Markov Model
Stationary emissions conditional on hidden (unobservald¢g st
Hidden states represent basic operating "regimes" of the process

0

L |
LR,
()
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Temporal structure - Hidden Markov Model

We have)M bags of ballof differentcolors(Red -R, Green G).

We are standing behind a curtain and at each point in time wetselmag
7, draw (with replacement) a ball from it and show the ball to an oleserv

Color of the ball shown at timeis C; € {R, G}. We do this forT time
steps.

The observer can only see the balls, it has no access to the infonma
about how we select the bags.

Assume: weselect bag at timébased only on our selection at the previous
time stept — 1 (1st-order Markov assumption).
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If only we knew ...

If we knew which bags were used at which time steps, things woeild
very easyl.. just counting

Hiddenvariables::
z/ = 1, iff bag j was used at time
z/ = 0, otherwise.

Z Z ..
P(bag; — bagy) = iy — .t“ [State transitions]

Zq 1Zt 1 2%7 Zt—H

ZtT=1 Zi - 0(c=Cy)

T [emissions]
de{R,G} D =14 - 0(g = Cy)

P(color = c | bag;) =
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But we don't ...

We need teestimate probabilities for hidden evestsch as:

Jj Jk
zt-ztﬂ—l

at timet - bagy, at the next time step - bag

2 5e=C) =1
at timet - bagy, ball of colorc

Again, theprobability estimates need to be based on observediatad
our current modeof state transition and emission probabillities.
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Estimating values of the hidden variables

P(z] - zf 1 = 1| D, current model = R{Ak

P(z -6(c=C,) = 1| D, current model = R/*

| will not deal with the crucial question of how to compute tBgmsteriors
over hidden variables, given the observed data and current model

parameters.

This can be done efficientlyForward-Backward algorithm
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Re-estimate the model

Lod . ok
P(bag; — bagy) = Zt 1 t .tH

Zq 1275 1 Z%Z Zt+1

T—1 pi—k
th

Zq 12T 1Rj—>

~

P(bag; — bagy) = [state transitions]

> 7 0(e=C(1))
> gerran et 2 0(g = C(1))

T ,C
2 =1 It
T B
ZgE{R,G} thl R}Z /

-

P(color = c | bag;) =

[emissions]

P(color = c | bag;) =
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Learning - can we do better than hand-waving?

Observed dataD

Parameterized model of data itemis p(x|w)

Log-likelihood ofw: log p(D|w)

Train viaMaximum Likelihood

Wy, = argmax log p(D|w).
W
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Complete data

Observed datdb

Unobserved dataZ (realization of compound hidden varialig
Complete data(D, Z)

By marginalization (integrate out the uncertainty if"):

p(Dlw) = Zp (D, Z|w)
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Concave function

A
F(au’ + (1-a)u”)
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For any concave functiof’ : R — R and anyu’,v” € R, a € [0, 1]:

Flav' + (1 —a)u”) > aF () + (1 —a)F(u").

F (Z aiui> > ZaiF(ui), a; > 0, Zai =1
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A lower bound on log-likelihood

Pick ‘any’ distribution () for hidden variable”.
2.zQ(2)=10(2) >0

log(-) is a concave function

logp(D|w) = log

S

p(D, Z|w)
2.5 =g )

(
( D, Z|w)

> Y az)os (M2 _ s

Z
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Max F (@, w) - lower bound on log-likelihood

Do ‘coordinate-wise’ ascent Qi (Q, w).
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Maximize F(Q,w) w.r.t. () (w fixed)

_ o [ P(P: 2|W)
Fw = TaE(MGZ")

i} (pED.w) - p(Dw)
- ;Q(Z)lg< s )
p(Z’D,W)

Q(Z)

+ ) Q(2) - log p(D|w)
Z
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Maximize F(Q,w) w.r.t. () (w fixed)

Sincelog p(D|w) is constant w.r.t(), we only need tanaximize
—Dg1|Q(Z)||P(Z|D,w)], which is equivalent toninimizing

Dk r|Q(2)[|P(Z]D,w)] = 0.

This is achieved whe® 1 |Q(Z2)||P(Z|D,w)| = 0, i.e. when

Q«(Z) = P(Z|D,w)

Note: 7(Q,w) = log p(D|w) - no longer a lose lower bound!
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E-step

Theoptimal way for guessinthevalues of hidden variablez is to set the
distribution of Z to the posterior oveg, given the observed dafaand
current parameter settings
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Maximize F(Q),w) w.rt. w (Q is fixed to Q),)

F(Q, W)

p(D, Z|w)
= Y Qu(2)logp(D, Zw) — ZQ* ) log Q.(Z)
Z

= Eg.(z)|logp(D, Z|w)] + H(Q*)-

Since the entropy af).., H(Q.), is constant@. is fixed), we only need to
maximizeEq () [logp(D, Z|w)).

W, = argmax /iy () |log p(D, Z|w)].
w
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M-step

Theoptimal way for estimating the parameterss to select the parameter
valuesw, thatmaximize the expected value of the complete data
log-likelihood p(D, Z|w), where theexpectations takenw.r.t. the

posterior distribution over the hidden dafa P(Z|D, w) (our best guess).

Find a single parameter vectar, for all hidden variable settingg (since
we don’t know the true values &f), but while doing thisyweight the
Importance of each particular settiggby the posterior probability
P(Z|D,w).
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E-M Algorithm

Given the current parameter settiwg¢ do:

E-step:
EstimateP(Z|D, w°'?), the posterior distribution ove, given the
observed dat® and current parameter settingg?.

M-step:
Obtain new parameter valueg“* by maximizing

Epz1p weray[log p(D, Z|w)].

Setw°!? .= w"*" and go to E-step.
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Manifold learning (for ants)

Imagine you are an ant and you are faced with this 2-dim data set:

[ J
. ode .. o0 %
°% ofs 0’ 00 "o:
.0. .0'..0 .0....
: ® .0.!::..
...O ....
i

but you can comprehend only 1-dim patterns

We should be able to understand the data - it corresponds to &*nois
1-dim manifold
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Build a latent space model of data distribution

[I think I know how the data might have been generated ]

Everything can be "explained” using a line segment (Latent Space = computer screen)

® o
-1 +1

/ \ Compress, stretch, bend (non-linear me

/\ ﬁ> Add some noise
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Project the data

Project the data

OGBSI D ANMNC-HONOMIMOMDOVIIMBENe®e  Sircich back to a straight lin
(computer screen)
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Constrained mixture models

A chain ofnoise models (Gaussians) along a 1-dim "mean data manifold"

Constrainednixture ofnoise models - sphericalaussians

Still p(t) = Zé‘il P(j) - p(t]y), but now theGaussians are forced to have
their means organized along a smooth 1-dim manifold
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Smooth embedding of continuous latent space

low—dim latent space (continuous)
-1 +1

(smooth) non-linear embedding in high—dim model ¢

= constrained mixture
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Smooth embedding of continuous latent space
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Data (roughly) along a 2-D manifold

Generalize the notion of ‘bicycle chain’ of codebook vectomske
advantage of two-dimensional structure of the computer sceever it
with a 2-dimensional grid of nodes.

Computer Screen

Data Space A A
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Generative Topographic Mapping

rojection manifol

Latent space )

o
e 6 o o o PY
o
e o o o o
..0000
e o o o o
—
Centres x
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GTM - model formulation

Models probability distribution in the (observable) high-dimada
spacer? by means of low-dim latent variables. Data is visualized in
the latent space/ c R (e.g[—1,1]?).

Latent spacé{ is covered with an array d@f' latent space centers
X. € H,ce=1,2,...,C.

Non-linear GTM mapf : H — D Is defined using a kernel
regression B fixed basis functions; : H — X, collected ing,

(Gaussians of the same widil), D x B matrix of weightsw':

f(X) =Wpyxp ¢(X)
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GTM - model formulation - Cont'd

GTM creates a generative probabilistic model in the data space by
placing radially-symmetric Gaussiafit| x., W, 3) (zero mean,
iInverse variancg) aroundf(x.),c=1,2,...,C.

Defining auniform prior overx., the GTM density model is

C

PAIW,5) = & 3 Pt %, W, 9

c=1

The data is modelled ascanstrained mixture of GaussiarSTM
can be trained using &M algorithm

Mixture of Gaussians where we sneaked in a non-linear model
(low-dim manifold) where the Gaussian centers can lie.
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GTM - Data Visualization

Posteriomprobabilitythat thec-th Gaussian generateég,

_ P(ta] X, W, 5)
Zle P(tn‘ XJHW?B).

c,n

The latent space representation of the pojint.e. theprojection of
t,,, IS taken to be thenean

C

Z TC’TL XC

c=1

of the posteriodistributionon .
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Differential geometry on projection manifold

Unlike many other manifold learning methods, GTM provides expli
parametrized model for the data manifold!

Latent space - global co-ordiate chart.

Magnification Factors:
We canmeasure stretch in the she@&his can be used tetect the gaps

between data clusters

Directional Curvatures:
We can also measure theectional curvature of the 2-D sheet embedded

In the high-dim data space
Visualize themagnitude and direction dlhelocal largestcurvaturego see

where and how the manifold is most folded.
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Magnification Factors (detect clusters)

.-Eo—o—o—o—o—o%—o—o—o—%—o latent spac

-1 +1

contract

projections
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Directional Curvatures (detect foldings)

Latent spaced Data spac®
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Toy Example

|

Wi

i
JI

it
/,/fl”»M‘

‘\Q\\\ /|
\‘ \/
Y ‘\ \
6:\ ﬁ\x\
0
M‘"

g
N
y

dH

‘\‘

‘W’Q’Q A

-4 4 -4 -4

Data manifold Projection manifold

Magn. factors Dir. curvatures
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Directional Curvature

Thetangent vectoy:(0) to . ati(0) lies in Ty, (dashed rectangle),
the tangent plane of theanifold f () at 1 (0).

Let I‘,,(al) be a (column) vector of partial derivatives of the function

f=N 2 T,
with respect to the-th latent space variable &§ € H,

Let (1) be theD x L matrix

r® =l 1

The range of the matrik(!) is the tangent plan€x, of the
projection manifold? at f(Xg) = u(0).
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Directional Curvature

Orthogonal projection ontdy, is a linear operator described by the
projection matrix

- (pu))* |

Decompose the second directional derivafiye) of f into two
orthogonal components, one lying in the tangent sdagethe other

lying in its orthogonal complemeifty ,

ji(0) = jil(0) + ji(0),  jil(0) € Tx,, ji"(0) € Tx,.

il (0) - changes in the first-order derivatives due to “varying speed of
parameterization”

ji(0) - changes in the first-order derivatives that are responsible for
curving of the projection manifol€b
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Missing Data

Data pointt,, divided into anobserved componefit and amissing
component’”.

Having agenerative probabilistic model of the d&ian help us taleal
with missing values in a principled manner - treat them as tat@amables!
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Toy Example — Missing Data

After 15 iterations of training. After 15 iterations of training.

0 — complete data points

+ — centers of the Gaussian mixture components
* — Filled in missing values

discs — 2 standard deviations of the noise model.
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Hierarchy of GTMs

Top level visualization | (| aye

/’. This looks interesting!
This looks interesting! / T

N\

4 A

Level 2
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3 types of hidden variables!

1. Wedo not knowthe exactissignments of points, to GTMsN at
level /, but we do havenodel responsibilities’ (/| t,,) from the
previous step.

P(N | t,) is the posterior probability that GTM generated,,.

2. AssumingthatGTM N at level/ generated,,, we do not knowthe
exactassignments of its childrei at level/ + 1 tot,,. We can
calculateparent-conditional responsibilitig3(M| N, t,,)

3. AssumingthatGTM M at level? + 1 generated,,, we do not know
the exactissignments of its latent space centeYstot,,. We can

evaluater;!
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Toy Example — HGTM

Training set

X2 X1 -4 -4

Data + child projection manifolds
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Toy Example — HGTM plots

Class 1

° ® Class1
® Class?2 ® Class2
® Class3 ® Class3
® C(Class4 ® Class4

S :’: ?’.‘$.b. ‘% ?. 5 .:.3".?.'. ] o '.?- Qm' o .8“ ap :‘ % f;. % "“&?' .?..’: A ;&w.;.;":. -q*' Q :“ f:’
ARy U S DA Tt Pt 4 gy KplEpd iR Lo e isTioA) | AT SR 03
DL AT XY P PR £ LB Laels AN ot s vy A P "-_y’ e Pl (MBS 21
BEE ST SR (F RS bt v dra BN A NG S BEs SRy TN R ORI
e it 1Y X B wies s g '?‘"’ LN R REE N o, > < 18'e? o BNt 8% . K ) I_",‘_:"-.-g. s
KT 1 IORC A RS L XA, LR It T a T [l X2 -"?:M.:. SR RASS AR .i' R e
A ,-0::’". v ‘-f."' ;n\ .‘Q" P J,.'.’:;'.J‘-? a;'.-l N :'.' A o o a";’ﬁ : c". ‘,,'b l's.,'b'" eyt S ‘.:'.J‘.? w.'g'.\' H "}*‘
b R SO T X A R S e .;‘ZO: Hatnesieg 60 R S Tl L0 SO S AN 8 T PR T
HEA I A D SR R Fk ¢ M O Y I A R X R ok . Ly ALY
fedigdes el | | la e L PR Y ol RS | | e LA

Projections + Child modulated parent plot

Probabilistic Modelling in Machine Learning — p.61/126



Oil data

Data set arises from a physics-based simulation of non-invasivgoning
system, used to determine the quantity of oil in a multi-phageline
containing a mixture of oil, water and gas

1000 pointan 12-dim space

Points in the data set are classified iBtdifferent multi-phase flow
configurations- homogeneoysnnularandlaminar
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Hierarchical GTM - Oil data

® Homogeneous
® Annular
® Laminar
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Understanding the plot

® Homogeneous
® Annular
® Laminar
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Magnification factors
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Directional Curvatures
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Let’s get crazy - GTM in the model space!

Other data types=- other noise models

rojection manifol
Latent space J

| o
e 6 o o o °®
o
© & & ¢ ® | RBFnet
..0000
e 0 o o o !
—
Centres x
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Other data types=—> other noise models

Probabilistic framework is convenientve can deal with arbitrary
data types as long as an appropriate noise model can be formulated

The principle will be demonstrated on sequential data, bunsxiaes
to other data types (graphs) are possible.

Forsequential data

®m neednoise modelshat take into accourniemporal correlations
within sequence%.g. Markov chains, HMMs, etc.
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Latent Trait HMM  (LTHMM)

GTM with HMM as the noise model!

For each HMM (latent center) we need to parameterize several
multinomials

Initial state probabilities
transition probabilities

emission probabilities (discrete observations)

Multinomials areparameterized through natural parameters
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LTHMM

alphabet ofS symbols,S = {1, 2, ..., S}.
Consider a set of symbolic sequence®) = (s\"),_.z ,
n=12,...N

With each latent poink € H, weassociate a generative distribution
(HMM with K hidden statespver sequencess|x).

'B
E
8
3=k
5
§
L‘
=
'B
£{°
§

‘mc

S
|
=
m
::12
IIMQ
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Smooth manifold in the k-state HMM space

LTHMM parameters are obtained through a parameterzedoth
non-linear mapping from the latent space (global coordinate ciméotthe
HMM natural parameter space (another global coordinate chart)

g(.) is the softmax function (the canonical inverse link function of
multinomial distributions)

exp{ag}

. Ck=1,2.. 7
§:¢:16XP{G@}

9k ((ala ag; ... a@)T) —

Free parametersA(™) ¢ RExB A1) ¢ RKxB gng A(B+) ¢ RSxB
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From latent points to (local) noise models

n(@) = {p(h = k) -1k
= {9(A™ (@) bi-1:x

T(x) = {plht =Fklhi-1 =1L x)}ki=1.K
= {ge(ATV (@) }p i1k

B(.’B) — {p(sgn) — S‘ht — ka w)}szl:S,kzl:K
= {gs(APY (@)} emrspm1k
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Riemannian manifold of HMM

+1

H

2-dim manifold M of local noise models (HMMs)(-|x) parameterized
by the latent spacthirough a smooth non-linear mapping.
M is embedded in manifol@ of all noise models of the same form.
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Riemannian metric

Latent coordinateg aredisplaced tac + dx.
How different are the corresponding noise models (HMMSs)?
Need to answer this in a parameterization-free manner...

Local Kullback-Leibler divergencean be estimated by
Dlp(s|z)|p(s|z + dz)] ~ dz" J(z)dz,
whereJ(x) is theFisher Information Matrix

0% log p(s|x)
Jij(®) = —Epsix) [ O0x;0x ]

that acts like anetric tensoon the Riemannian manifold
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LTHMM - Fisher Information Matrix

HMM is itself a latent variable model.
J(x) cannot be analytically determined.

There are several approximation schemes and an efficient algdothm
calculating theobserved-isher Information Matrix.
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Induced metric In data space

Structured data types - careful with the notion of a metric in tha dpace.
LTHMM naturally induces a metric in the structured data space.

Two data items (sequences) are considered to be close (or sirindath
of them are well-explained by the same underlying noise modgl (e.
HMM) from the 2-dimensional manifold of noise models.

Distance between structured data items is implicitly definethbk local
noise models that drive topographic map formation.

If the noise model changes, the perception of what kind of datas are
considered similar changes as well.
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LTHMM - training

Constrained mixture of HMMs is fitted dylaximum likelihoodusing an
E-M algorithm

Two types of hidden variables:

which HMM generated which sequence
(responsibility calculations is in mixture models)

within a HMM, what is thestate sequenaesponsible for generating
the observed sequence
(forward-backward-like calculations)
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Two Illustrative examples

Toy Data
400 binary sequences of length 40 generated #diiiMs (2
hidden states) witidentical emission structuighe HMMsdiffered

only in transition probabilities Each of the 4 HMMs generated 100
seguences.

Melodic Lines of Chorals by J.S. Bach
100 chorales. Pitches are represented in the space of one o&ave,
the observation symbol space consists of 12 different pitahegal
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Toy data

State Transitions

State-transition probabilities

Emissions

Emission probabilities

03

Toy data: info matrix capped at 250

+ Class 1
*  Class 2
o Class3
o Class 4
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Bach chorals

ﬂ atS Latent space visualization
\l‘ T T T T T T ]
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Topographic formulation regularizes the model

2.55

25

2451

241

235

negative log likelihood
N
) N
1 w

N
N
T

2.15F

21r

2.05
0

Evolution of negative log-likelihood per symbol measured anttaining
(0) and test (*) setéBach chorals).
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Topographic organization of eclipsing binaries

Line of sight of the observer is aligned with orbit plane of a twar s
system to such a degree that the component stars undergo mciipaés.

Even though the light of the component stars does not vary,saagp
binaries are variable stars - this is because of the eclipses.

The light curve is characterized by periods of constant light wahodic
drops In intensity.

If one of the stars is larger than the other (primary star), one will be
obscured by a total eclipse while the other will be obscuredibgranular
eclipse.
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Eclipsing Binary Star - normalized flux

flux

flux

flux

Original lightcurve

0.81-

0.6

primary eclipse

time

Shifted lightcurve

\/

primary eclipse

1 T-1 T
time
Phase—normalised lightcurve
‘ — ‘ ‘
1 ™ b/ \d 7
0. .0. 0. .0
0.9~ * * A * -
. . * .
0.8 * *
0..0 *
07 o *
06 & *
05 @ L ]
0.4 o *
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0
phase
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Eclipsing Binary Star - the model

N

Parameters:

Primary massm (1-100 solar mass)
mass rationg (0-1)

eccentricity:e (0-1)

inclination: ¢ (0° — 90°)

argument of periastronip (0° — 180°)
log period: 7 (2-300 days)
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Empirical priors on parameters

p(m,q,e,i,ap, ) = p(m)p(q)p(m)p(e|m)p(i)p(ap)

Primary mass density:
b

p(m) =axm

[ 0.6865, if 0.5 X Mgy < m < 1.0 X Mgyp
a =14 0.6865,1f 1.0 x Mgy, <m <10.0 X Mgyp
| 3.9,1f 10.0 X Mgyy, < m < 100.0 X Mgyp

[ —1.4,if 0.5 X Mgyn <m < 1.0 X Mgy,
b=1< —2.5,if 1.0 X Msypn <m <10.0 X Mgyp
L —3.3,1f 10.0 X Mgyy, < m < 100.0 X Mgyp
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Empirical priors on parameters

Mass ratio density
p(q) = p1(q) + p2(q) + p3(q)

where 2
pi(q) = A; x exp(—0.519=4:0)
with

A1 =1.30,A9 =1.40, A3 = 2.35
q1 = 0.30, g2 = 0.65, g3 = 1.00
S1 — 0.18, S99 — 0.05, S3 — 0.10

log-period density

(r) = 1.9333773 + 5.742072 — 1.331527 + 2.5205,if 7 < log1918
PATT =9 19.03721 — 5.6276, if 101018 < 7 < 10G10300

etc.
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Flux GTM

Smooth parameterized mappihgfrom 2-dim latent space into the space
where 6 parameters of the eclipsing binary star model live.

Model light curves are contaminated by an additive observakiooise
(Gaussian). This gives a local noise model in the (time,flux)-space

Each point on the computer screen corresponds to a local noisel arall
"represents” observed eclipsing binary star light curves thatwalle
explained by the local model

MAP estimation of the mapping via E-M.
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Outline of the model (1)

1
X coordinate vector
-1 e 1 [Xy %]
5 v 1
P N
-1
Latent space Apply smooth mapping

(computer screen)

parameter vector

Parameter spac

Apply physical model
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Outline of the model (2)

Apply physical model

Distribution space

y

phase

Apply Gaussian obervational noise

flux

0.9r

0.8r

0.7

0.6

0.5r

0.4

0 0.2 . . 0.8 1

phase
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Artificial fluxes - projections
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Artificial fluxes - model

ing —p.91/126
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Real fluxes - clustering mode
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Off-the-shelf methods may produce nonsense!

lightcurve in dataset
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Real fluxes - projections + model

(o]
@

Primary mass Mass ratio Eccentricity

Inclination Argument Period

ol
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3-color cDNA microarrays

Traditional dual-color cDNA microarrays — 2 different fluorescence
dyes corresponding to two samples (e.g. “normal” and “disease”).

3-color cDNA microarrays — 3rd dye associated with yet another
sample hybridized to a single microarray.

Assess effects of a drug — essay hybridizing three samples:
normal(dyed red), (dyed green)drug-treateddyed blue).

IntensitiesR, G andB reflect expression levels of the genes in the
normal (healthy), disease and drug-treated samples, respectively
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hexaMplot [Zhao06]

2-dim representation of R, G and B intensities suited for agsgssi
the drug effect on essayed genes

hexaMplot coordinates: log ratios of intensity pairs
r1 = logy, B/G andzy = log, G/R.

Genes in theipper and lower half-plangeup- and down-regulated,
respectively, by the disease

Genes In théeft and right half-plan@reup- and down-regulated,
respectively, by the drug treatmenbmpared with the disease
sample.

Slant axisto = —z1 = log, B/ R = 0. Expression levels of genes
In the normal and drug-treated samples are the same

Probabilistic Modelling in Machine Learning — p.96/126



hexaMplot

G>B>R
B>G>R
undesirable drug effect
G>R>B
log B/C
B>R>G
R>G>B

~—+

undesirable drug effeg
R>B>G

Quadrant 4
d B:Ff' i he eff
rug neutralizing the effect
Quadrant 3 J of the dise%se
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Assessing drug effects through hexaMplot

Drug neutralizes the effect of the disease on the essayed genes —
gene representations cluster around the slant axis

Deviations form the slant axis within the 4th and 2nd quadrants
(x1 > 0,20 < 0andz; < 0,29 > 0, respectively) still represent
drug effects in the right direction

Genes in 1st and 3rd quadrafts, x2 > 0 andz, 2o < 0,
respectively) -uindesirable effect of the drug:

enhancing the up-regulation, or suppressing the down-regulatio
the gene by the disease.
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Past work

[Zhao06 ] — correlation coefficient of hexaMplot gene represesriati
calculated and assessed for statistical significance.

[ZhaoO7 ] - more involved analysis.
Detect groups of genes with similar expression patterns relsdiv
the disease and the drug

- Each such group is alignTed alongjr@e raystarting in the
hexaMplot origin.

- Directionof the ray signifies whether the drug has positive or
negative effect.

- Angle measures the drug effect level

The lines were detected through Hough Transform
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H Transform
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Problem 1

HT applied to the differentially expressed genes only.

Their detection done through fitting a global bi-variate Gaussia
hexaMplot gene representations and then applying a prolyabilit
density threshold.

- “Hard” separation of genes into equally vs. differentially eegsed
genes is not optimal — typically there will be a high densitgehes
around the separating confidence ellipse.

- Results can be sensitive to the particular choice of the denfie
value defining what is differentially expressed and what is not.
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Problem 2

HT implicitly imposes a noise model that does not fit the nataifre
hexaMplot representations well.

- Induced noise model depends on the line parametrization used.

- (z1, z9) hexaMplot representations are negatively correlated and
there is no direct way of representing this fact in the standard HT.
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Problem 3

Determination of the quantization level in the Hough spaoaikh
reflect the amount of “measurement” noise in the hexaMplot
features.

The quantization level determines the amount of smoothinigan t
Hough accumulator, which in turn has an effect on the number of
distinct peaks (detected lines) in the Hough space.
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Problem 4

Given a detected line, there is no principled way of quantifythne
strength of association of the points with that line.
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Our proposal — probabilistic HT

Address these shortcomings in the framework pfiacipled
probabilistic model based formulation

All essayed genes are considerdtie weaker and stronger
contribution of equally and differentially expressed genedtsined
naturally in a “soft” manner from thprobabilistic formulation of the
model behind the hexaMplot

The modekxplicitly takes into account the size and the negatively
correlated nature of the noisssociated with hexaMplot gene
representations.

Both thestrength of association of individual genes with a particular
group(line ray in hexaMplot) and theupport for the group by the
selected genesan bequantified in a principled mannérrough
posterior probabilities over the line angles, given the olzdems.
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Probabilistic HT

% e 9
| Pt 1)

- ~
- -
- S e mmm

X

[ —

Q.—————:——-—A—— - - ——
L

Probabilistic Modelling in Machine Learning — p.107/126



The model

A line ray inR? (hexaMplot space) starting in the origin at an angle
a € [—m/4,Tr/4).

Bi-variate zero-mean Gaussian measurement noise with covariance
matrix X x. The density of possible measurements

X = (x1,22)! € R? corresponding to the poirft cos o, 7 sin /) on

the line is given by

1
27‘(“2){‘1/2

p(X‘Oz,T) —

1
exp {_Z(XT — (rcosa,rsina)) ¥y (X — (rcos a, sin a)T)} :

wherer > 0 is the (Euclidean) distance of the point on the line from
the origin.
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The model - contd’

Prior knowledge about the parameter values
(a,7r) € [ /4,7 /4) x |0,00), summarized in the form of a prior
distributionp(a;, 7).

Given an observatior, the induced uncertainty in the parameter
space Is given by the posterior

p(x|a,r) pla,r)
TP+ plar, ) do/dr’

pla,r|X) =
f[w/4,77r/4)><[0,oo

To obtain the amount of support for the angle parametgiven the
observatiorx, we integrate- from the posterior:

plalx) = /[ plarl) o
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The model - contd’

Given a set of observatiord = {x!,x?,...,xV}, x* € R?,
¢ = 1,2, ..., N, accumulate the evidence contributions in the Hough
spaceH
1 N
. = )
H(Oz,p) T N Zp(Oé‘X )

1=1

Given that a line candidate with inclination angldnas been
detected by inspecting the peaks of the Hough accumutatos D),
one can ask which points frofa are strongly associated with it.
Consult the posteriors(a|x!),i = 1,2, ..., N, and select points
above some threshold valde

To enhance the threshold interpretability, we discretized tiggea
spaceH into a regular grids = {a1, ae, ..., } and turned the
densitiep(«|X) into probabilitiesP (&, |x) over thed.
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The model - contd’

Calculate the probability thresholde (0,1) asf = /M,

k € (0, M), meaning that only observations with posteriors at lgast
times greater than the uninformative distributiof/ will be
considered.

Given a probabillity threshold and a (discretized) angte the set of
selected points that support the line rayeads:

Sp(@) = {x | x € D, P(a|x) > 0}.

Check how much the set as a whole supports that line ray throegh th
posterior

o p(Ss@)a) Pa)
PalSe@) = s g, @a) @)’

whereP(&’) is the prior distribution over the grid.
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The model - contd’

Assuming independence of observations

p(Se(@)la) = ][ px

XES@ Oé)

=H/x|r (rld')dr

XES@ a)

Here,p(X|r, @) is the noise model ang(r|a’) is the conditional
prior onr.
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Noise model

It is usual to assume that the log intensities are normally Qiged.

B G\!
X = (z1,12)" = (log o log R) -

Consider 3 random variables (log intensiti&s) Ys andY;
representindgog B, log GG andlog R, respectivelyhexaMplot
representationgry, x2) correspond to two random variables
X1 =Y — Yy and Xy = Y5 — Y3 coupled througlhs.

Even if we assume that the individual measurement errors of the
three log intensitie®7, Y5 andY; are independent, the implied noise
In the hexaMplot coordinateX, X, will be negatively correlated
This simply follows from that fact that whil®, contributes

negatively toX, its contribution taXs Is positive.
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Noise model

Assuming that the measurement noise of the log inteNs§ity a zero
mean Gaussian with varianeg, i = 1,2, 3, (X1, X5) will be
Gaussian distributed with covariance matrix

0'2—|—O'2 — o2
EX_[ 1 22 ) 22]. (1)

We assume equal levels of measurement noise across the three

colors,0? = 0% = 03 = 0%,

zX:202[ ! _151 2)
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Toy example

x! = (0.1,-0.1)1, x2 = (-1,0)! andx?® = (-1.75,1.75)%

p(alpha,r | x) p(alpha | x)
T T T T 15 T T

sigma=0.z

sk 4
] E—— —r/\—k — 7|
0 3 4 5

2alpha ’ ) ’ ' ’ alpha
(a) (b)
p(alpha,r | x) ; p(alpha | x)

@

sigma=0.0¢

/\J
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Real data

Analyse action of the drug Rgl (dominant compound of the extract
of ginsenosides in ginseng) on homocysteine-treated human
umbilical vein endothetial cells (HUVEC).

1128 genes assayed in four microarrays (4 repeats under the same
experimental conditions).

Usual data normalization.
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hexaMplot
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Need a dedicated grouping mechanism...

GMM model + model evidence
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GMM

!
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Probabilistic HT - detected line rays

o = 0.05, Sp(«) chosen usind/ = 126 andk = 25

0.5

-1.5

hexaMplot

.
K]
~
R .
.
...
>
O
.
. e
Ze
.

15

Probabilistic Modelling in Machine Learning — p.119/126




Probabilistic HT - accumulator

ht(alpha) ht(alpha) ht(alpha)
T T T T T

Probabilistic Modelling in Machine Learning — p.120/126



Detected line rays

The shortest intervalgy_ (0), & (o)) containing the estimated line angles
and 95% of the posterior mag¥-|Sy(a)) around them. The intervals are

shown for three levels of observational noise= 0.05, c = 0.3 and
o= 1.0.

line | & (&—(0.05), &4 (0.05)) | (—(0.3),64(0.3)) | (&—(1.0),&4(1.0))
1 | -0.685 (-0.735,-0.684) (-0.736, -0.683) (-0.885,-0.535)
2 | -0.585 (-0.635,-0.584) (-0.635, -0.535) (-0.785,-0.435)
3 | -0.285 (-0.335,-0.284) (-0.385, -0.235) (-0.685,-0.235)
4 | 1.965 (1.914,1.966) (1.665, 2.265) (-0.035, 3.015)
5 | 2.215 (2.165,2.216) (2.015, 2.365) (1.565, 2.765)
6 | 2.465 (2.415,2.466) (2.265, 2.615) (1.865, 3.015)
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Support for the detected groups

PosteriorsP(«a|Sy(«a)) of the six detected lines (gene groups) for two
levels of observational noise: = 0.05 (a) ando = 0.3 (b).
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GO analysis

line | |Sp(&)] | GOtermID | #genes| #genes fronSy (&) | p-value
1 80 G0:0002675 87 37 0.00173
G0:0002525 85 36 0.00242

G0:0006953 85 36 0.00242

G0:0002527 86 36 0.00322

G0:0002543 86 36 0.00322

G0:0002539 60 27 0.00441

G0:0002540 60 27 0.00441

2 64 G0O:0044424 176 41 0.00000
G0:0044444 175 41 0.00000

G0:0044446| 168 39 0.00294

GO:0030117 165 38 0.00437

G0:0045265| 162 37 0.00536

3 71 G0:0005488| 178 51 0.00000
GO0:0050794| 163 55 0.00295
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GO analysis

The first three lines with angles {r-7/4,0) represent genes with
(R, G, B) intensities satisfyings < R < B.

The disease decreases expression of a gene, compared with its
normal expression leve®, i.e. G < R. The drug eliminates this
effect by overexpressing the genés > R.

Genes in the group corresponding to the 1st line are related te acut
Inflammatory response (GO:0002675, GO:0002525) increasing for
example the concentration of non-antibody proteins in thenpdas
(GO:0006953), or increasing the intra- or extra-cellular levéls o
prostaglandin (GO:0002539) and leukotriene (GO:0002540).
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GO analysis

The 3rd line groups genes that are related to binding mechanisms
(GO:0005488) and breakdown of neutral lipids (GO:0046461),
membrane lipids (G0O:0046466) and glycerolipids (GO:0046503).

The disease also down-regulates genes related to pathways of the
complement cascade which allow for the direct killing of micsb

as well as regulation of other immmune processes (G0O:0001867,
G0O:0006957). The drug Rgl corrects this situation by stimulating
the pathways.
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GO analysis

The 4th and 5th lines with angles (in /2, 37 /2) represent genes
with (R, G, B) intensities satisfyind? < B < G.

Compared with its normal expression level, the expression oha ge
IS Increased by the diseasé (> R). The drug partially eliminates
this effect by reducing the expression levelRpleaving B still

above the normal expressidén

The 6th line witha € (37/2, 7) groups genes withR, G, B)
Intensities satisfyind < R < G.

The disease causes increased expression of a geneK) and the
drug compensates for this effect by driving the gene expression
below the normal level < R).

While genes grouped together by the 4th line are associated with
Immune and chronic inflammatory response, the genes
corresponding to the 5th and 6th lines are again related to &ellul
components and mechanisms effected by the disease.
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