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Probabilistic modelling and ML...

many different flavors

start with dataD

think - Q1: How could the data have been generated?
source (model)

think - Q2: What interesting aspects in the data you’d like to capture?
This will also inform the model structure!
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The model...

Model (parametrized)- p(D|w)

Or you may want to be smart and formulate the model in a fully Bayesian
framework -"parameter free"...

... but at some point there will besomeparameters (of prior), or you may
rely solely on hierarchical Bayes...
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Generative probabilistic model - advantages?

– principled formulation

– transparent and interpretable model structure

– principled model selection

– consistent coping with missing data

– consistent building of hierarchies

– ...
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Model structure and model fitting

Probabilistic modelling involvestwo main steps/tasks:

1. Design themodel structureby considering Q1 and Q2.

2. Fit your model to the data.

– Sometimes the two tasks are interleaved -
e.g. when model fitting involves both parameters and model structure (e.g.
infinite mixtures...)

Probabilistic Modelling in Machine Learning – p.5/126



Model structure and model fitting

Model fitting: ML, MAP, Type II ML, full Bayesian treatment...

We will put more emphasis on task 1.

Experience the way probabilistic modelers in ML think -
examples of different data structures and different "questions onthe data".
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Start with the data... (simple example)
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Think: How could have this data been generated?
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Mixture models

Mixture of Gaussians
Given a set of data pointsD = {x1, x2, ..., xN}, coming from what looks
like a mixture of3 GaussiansG1, G2, G3, fit a 3-component Gaussian
mixture model toD.

p(x) =
3
∑

j=1

P (j, x) =
3
∑

j=1

P (j) · p(x|j),

P (j) – mixing coefficient (prior probability) of GaussianGj

p(x|j) – ‘probability mass’ given to the data itemx by GaussianGj .

Generative process:Repeat 2 steps
1. generatej from P (j)
2. generatex from p(x|j)
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Fitting the model is easy!
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It is fairly "obvious" which point comes from which Gaussian!
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Three Gaussians ...

Given that we know which data point comes from which Gaussian, things
are easy:

- Collectdatapoints fromD that areknown to be generated fromG1 in D1.

- Estimate free parameters(mean, covariance matrix)of G1 (e.g. ML):

µ̂1 =
1

|D1|

∑

x∈D1

x,

Σ̂1 =
1

|D1|

∑

x∈D1

(x − µ̂1)(x − µ̂1)
T .

Do the same forGaussiansG2 andG3.

- P (j) - proportions of sizes|Dj |.
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Formulation through indicator variables

We can represent theknowledge about which data point came from which
Gaussianthroughindicator variableszij , i = 1, 2, ..., N (data points),
j = 1, 2, 3 (mixture components - Gaussians):

zij = 1, iff xi was generated byGj ;

zij = 0, otherwise.

Then,

µ̂j =
1

∑N
i=1 z

i
j

N
∑

i=1

zij · xi,

Σ̂j =
1

∑N
i=1 z

i
j

N
∑

i=1

zij · (x
i − µ̂j)(xi − µ̂j)

T .
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Now that you are an expert, model this...
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oooops!
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The ground truth
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But how can I know that? –You cannot!
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Don’t know values of the indicator variables...

The assignments of points to Gaussianszij are
hidden/latent/non-observable variables!

Collect all the indicator variables in acompound(vector)latent variable
Z = {zij} ∈ {0, 1}N ·3.

Each setting ofZ representsone particular situation of assigning pointsxi

to GaussiansG1, G2 andG3.

This can be anything from trivial settings, such as all points come from
G1, to very mixed situations.
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Probabilistic way of dealing with uncertain Z

Assume we already have some guess about where the Gaussians should be
(µj) and what their shape is (Σj).

Since we don’t knowZ, we simplyneed to consider all possibilities
(cases)for assignmentsZ.

Obviously, looking at the data,not all assignmentsZ will be equally likely.

This is expressed throughposteriorP (Z|D, G1, G2, G3) that evaluates
how likely, given the data and current positions/shapes of Gaussians
G1, G2, G3, is the particular assignment schemeZ.
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GuessingZ, given the current model and data

zij ∈ {0, 1} is unobserved, so calculate its mean value instead -

”how muchzij wants to be set to 1”

EP (Z|D,G1,G2,G3)[z
i
j ] = 0 · P (zij = 0|D, G1, G2, G3)

+1 · P (zij = 1|D, G1, G2, G3)

= P (zij = 1|D, G1, G2, G3)

= Ri
j

Ri
j is the‘responsibility’ of Gaussianj for the data pointxi.

Substitutezij in the crisp case calculations with ‘softer’ probabilisticRi
j .
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Dealing with uncertainty in Z

Instead of

µ̂j =
1

∑N
i=1 z

i
j

N
∑

i=1

zij · xi

we have

µ̂j =
1

∑N
i=1R

i
j

N
∑

i=1

Ri
j · xi.

Instead of

Σ̂j =
1

∑N
i=1 z

i
j

N
∑

i=1

zij · (x
i − µ̂j)(xi − µ̂j)

T

we have

Σ̂j =
1

∑N
i=1R

i
j

N
∑

i=1

Ri
j · (x

i − µ̂j)(xi − µ̂j)
T .
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What next?

Having refined our model (positions and shapes of the Gaussians), refine
our ideas about possible assignmentsZ of pointsxi to Gaussians
G1, G2, G3. Of course, we still cannot be certain about exact values ofZ -
sostill a probabilistic formulation!

Ri
j = P (Gj |xi) =

P (xi|Gj) · P (j)
∑3

q=1 P (xi|Gq) · P (q)

Repeat the parameter estimation and assignment refinement steps until
‘convergence’.
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Apply to our data - iteration 1
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Apply to our data - iteration 2
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Apply to our data - iteration 30
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Another latent variable model

Hidden Markov Model

Stationary emissions conditional on hidden (unobservable) states.

Hidden states represent basic operating "regimes" of the process.

Bag 2

Bag 3

Bag 1
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Temporal structure - Hidden Markov Model

We haveM bags of ballsof differentcolors(Red -R, Green -G).

We are standing behind a curtain and at each point in time we select a bag
j, draw (with replacement) a ball from it and show the ball to an observer.
Color of the ball shown at timet is Ct ∈ {R,G}. We do this forT time
steps.

The observer can only see the balls, it has no access to the information
about how we select the bags.

Assume: weselect bag at timet based only on our selection at the previous
time stept− 1 (1st-order Markov assumption).
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If only we knew ...

If we knew which bags were used at which time steps, things wouldbe
very easy!... just counting

Hiddenvariableszjt :

zjt = 1, iff bag j was used at timet;

zjt = 0, otherwise.

P (bagj → bagk) =

∑T−1
t=1 zjt · z

k
t+1

∑M
q=1

∑T−1
t=1 zjt · z

q
t+1

[state transitions]

P (color = c | bagj) =

∑T
t=1 z

j
t · δ(c = Ct)

∑

g∈{R,G}

∑T
t=1 z

j
t · δ(g = Ct)

[emissions]
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But we don’t ...

We need toestimate probabilities for hidden eventssuch as:

zjt · z
k
t+1 = 1

at timet - bagj, at the next time step - bagk

zjt · δ(c = Ct) = 1
at timet - bagj, ball of colorc

Again, theprobability estimates need to be based on observed dataD and
our current modelof state transition and emission probabilities.
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Estimating values of the hidden variables

P (zjt · z
k
t+1 = 1 | D, current model) = Rj→k

t

P (zjt · δ(c = Ct) = 1 | D, current model) = Rj,c
t

I will not deal with the crucial question of how to compute those posteriors
over hidden variables, given the observed data and current model
parameters.

This can be done efficiently -Forward-Backward algorithm.
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Re-estimate the model

P (bagj → bagk) =

∑T−1
t=1 zjt · z

k
t+1

∑M
q=1

∑T−1
t=1 zjt · z

q
t+1

→

P (bagj → bagk) =

∑T−1
t=1 Rj→k

t
∑M

q=1

∑T−1
t=1 Rj→q

t

[state transitions]

P (color = c | bagj) =

∑T
t=1 z

j
t · δ(c = C(t))

∑

g∈{R,G}

∑T
t=1 z

j
t · δ(g = C(t))

→

P (color = c | bagj) =

∑T
t=1R

j,c
t

∑

g∈{R,G}

∑T
t=1R

j,g
t

[emissions]
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Learning - can we do better than hand-waving?

Observed data:D

Parameterized model of data itemsx: p(x|w)

Log-likelihood ofw: log p(D|w)

Train viaMaximum Likelihood:

wML = argmax
w

log p(D|w).
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Complete data

Observed data:D

Unobserved data:Z (realization of compound hidden variableZ)

Complete data:(D,Z)

By marginalization ("integrate out the uncertainty inZ"):

p(D|w) =
∑

Z

p(D,Z|w)
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Concave function

uu’’

F(u)

u’ au’ + (1−a)u’’

F(au’ + (1−a)u’’)

aF(u’) + (1−a)F(u’’)

0 <= a <= 1

For any concave functionF : R → R and anyu′, u′′ ∈ R, a ∈ [0, 1]:

F (au′ + (1− a)u′′) ≥ aF (u′) + (1− a)F (u′′).

F

(

∑

i

aiui

)

≥
∑

i

aiF (ui), ai ≥ 0,
∑

i

ai = 1
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A lower bound on log-likelihood

Pick ‘any’ distributionQ for hidden variableZ.
∑

Z Q(Z) = 1, Q(Z) > 0.

log(·) is a concave function

log p(D|w) = log

(

∑

Z

p(D,Z|w)

)

= log

(

∑

Z

Q(Z)
p(D,Z|w)

Q(Z)

)

≥
∑

Z

Q(Z) log

(

p(D,Z|w)

Q(Z)

)

= F(Q,w)
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Max F(Q,w) - lower bound on log-likelihood

Do ‘coordinate-wise’ ascent onF(Q,w).

F(Q,w)
w

Q
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Maximize F(Q,w) w.r.t. Q (w fixed)

F(Q,w) =
∑

Z

Q(Z) log

(

p(D,Z|w)

Q(Z)

)

=
∑

Z

Q(Z) log

(

p(Z|D,w) · p(D|w)

Q(Z)

)

=
∑

Z

Q(Z) log
p(Z|D,w)

Q(Z)
+
∑

Z

Q(Z) · log p(D|w)

= −
∑

Z

Q(Z) log
Q(Z)

p(Z|D,w)
+ log p(D|w)

∑

Z

Q(Z)

= −DKL[Q(Z)||P (Z|D,w)] + log p(D|w).
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Maximize F(Q,w) w.r.t. Q (w fixed)

Sincelog p(D|w) is constant w.r.t.Q, we only need tomaximize
−DKL[Q(Z)||P (Z|D,w)], which is equivalent tominimizing

DKL[Q(Z)||P (Z|D,w)] ≥ 0.

This is achieved whenDKL[Q(Z)||P (Z|D,w)] = 0, i.e. when

Q∗(Z) = P (Z|D,w)

Note:F(Q,w) = log p(D|w) - no longer a lose lower bound!
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E-step

Theoptimal way for guessingthevalues of hidden variablesZ is toset the
distribution ofZ to the posterior overZ, given the observed dataD and
current parameter settingsw.
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Maximize F(Q,w) w.r.t. w (Q is fixed toQ∗)

F(Q∗,w) =
∑

Z

Q∗(Z) log

(

p(D,Z|w)

Q∗(Z)

)

=
∑

Z

Q∗(Z) log p(D,Z|w)−
∑

Z

Q∗(Z) logQ∗(Z)

= EQ∗(Z)[ log p(D,Z|w)] +H(Q∗).

Since the entropy ofQ∗, H(Q∗), is constant (Q∗ is fixed), we only need to
maximizeEQ∗(Z)[log p(D, Z|w)]:

w∗ = argmax
w

EQ∗(Z)[ log p(D, Z|w)].
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M-step

Theoptimal way for estimating the parametersw is to select the parameter
valuesw∗ thatmaximize the expected value of the complete data
log-likelihoodp(D,Z|w), where theexpectationis takenw.r.t. the
posterior distribution over the hidden dataZ, P (Z|D,w) (our best guess).

Find a single parameter vectorw∗ for all hidden variable settingsZ (since
we don’t know the true values ofZ), but while doing this,weight the
importance of each particular settingZ by the posterior probability
P (Z|D,w).
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E-M Algorithm

Given the current parameter settingwold do:

E-step:

EstimateP (Z|D,wold), the posterior distribution overZ, given the
observed dataD and current parameter settingswold.

M-step:
Obtain new parameter valueswnew by maximizing

EP (Z|D,wold)[log p(D, Z|w)].

Setwold := wnew and go to E-step.
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Manifold learning (for ants)

Imagine you are an ant and you are faced with this 2-dim data set:

but you can comprehend only 1-dim patterns

We should be able to understand the data - it corresponds to a ‘noisy’
1-dim manifold
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Build a latent space model of data distribution
I think I know how the data might have been generated

−1 +1

Compress, stretch, bend (non−linear map)

Add some noise

Everything can be "explained" using a line segment (Latent Space =  computer screen)

Probabilistic Modelling in Machine Learning – p.40/126



Project the data

Project the data

Stretch back to a straight line
(computer screen)
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Constrained mixture models

A chain ofnoise models (Gaussians) along a 1-dim "mean data manifold"

Constrainedmixture ofnoise models - sphericalGaussians.

Still p(t) =
∑M

j=1 P (j) · p(t|j), but now theGaussians are forced to have
their means organized along a smooth 1-dim manifold.
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Smooth embedding of continuous latent space

−1 +1

constrained mixture

low−dim latent space (continuous)

(smooth) non−linear embedding in high−dim model space
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Smooth embedding of continuous latent space

σ σσ

φ (x)
φ (x)

φ (x)

1

2

B

...

t 1

t 3

t 2

x1 x2 xM

φ φ

x3

f(x)

x

f(x ) f(x )
f(x ) f(x  )

φ

2

3

1

M

1 2 B

f(x)=W3xB
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Data (roughly) along a 2-D manifold

Generalize the notion of ‘bicycle chain’ of codebook vectors: Take
advantage of two-dimensional structure of the computer screen.Cover it
with a 2-dimensional grid of nodes.

x1

x3

x2

β

Data Space

Computer Screen
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Generative Topographic Mapping

Latent space

Centres  x

RBF net

Data space  tn

i

Projection manifold
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GTM - model formulation

Models probability distribution in the (observable) high-dim data
spaceℜD by means of low-dim latent variables. Data is visualized in
the latent spaceH ⊂ ℜL (e.g[−1, 1]2).

Latent spaceH is covered with an array ofC latent space centers
xc ∈ H, c = 1, 2, ..., C.

Non-linear GTM mapf : H → D is defined using a kernel
regression –B fixed basis functionsφj : H → ℜ, collected inφ,
(Gaussians of the same widthσ), D ×B matrix of weightsW:

f(x) = WD×B φ(x)
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GTM - model formulation - Cont’d

GTM creates a generative probabilistic model in the data space by
placing radially-symmetric GaussiansP (t| xc,W, β) (zero mean,
inverse varianceβ) aroundf(xc), c = 1, 2, ..., C.

Defining auniform prior overxc, the GTM density model is

P (t| W, β) =
1

C

C
∑

c=1

P (t| xc,W, β)

The data is modelled as aconstrained mixture of Gaussians. GTM
can be trained using anEM algorithm.

Mixture of Gaussians where we sneaked in a non-linear model
(low-dim manifold) where the Gaussian centers can lie.
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GTM - Data Visualization

Posteriorprobabilitythat thec-th Gaussian generatedtn,

rc,n =
P (tn| xc,W, β)

∑C
j=1 P (tn| xj ,W, β)

.

The latent space representation of the pointtn, i.e. theprojection of
tn, is taken to be themean

C
∑

c=1

rcn xc

of the posteriordistributiononH.
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Differential geometry on projection manifold

Unlike many other manifold learning methods, GTM provides explicit
parametrized model for the data manifold!

Latent space - global co-ordiate chart.

Magnification Factors:
We canmeasure stretch in the sheet. This can be used todetect the gaps
between data clusters.

Directional Curvatures:
We can also measure thedirectional curvature of the 2-D sheet embedded
in the high-dim data space.
Visualize themagnitude and direction ofthelocal largestcurvaturesto see
where and how the manifold is most folded.
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Magnification Factors (detect clusters)

−1 +1
projections
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latent space

contract

expand
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Directional Curvatures (detect foldings)
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Toy Example
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Directional Curvature

Thetangent vectoṙµ(0) to µ atµ(0) lies inTx0
(dashed rectangle),

the tangent plane of themanifoldf(H) atµ(0).

LetΓ(1)
r be a (column) vector of partial derivatives of the function

f = (f1, f2, ..., fD)T ,

with respect to ther-th latent space variable atx0 ∈ H,

LetΓ(1) be theD × L matrix

Γ
(1) = [Γ

(1)
1 ,Γ

(1)
2 , ...,Γ

(1)
L ].

The range of the matrixΓ(1) is the tangent planeTx0
of the

projection manifoldΩ atf(x0) = µ(0).
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Directional Curvature

Orthogonal projection ontoTx0
is a linear operator described by the

projection matrix

Π = Γ
(1)
(

Γ
(1)
)+

,

Decompose the second directional derivativeµ̈(0) of f into two
orthogonal components, one lying in the tangent spaceTx0

, the other
lying in its orthogonal complementT⊥

x0
,

µ̈(0) = µ̈‖(0) + µ̈⊥(0), µ̈‖(0) ∈ Tx0
, µ̈⊥(0) ∈ T⊥

x0
.

µ̈‖(0) - changes in the first-order derivatives due to “varying speed of
parameterization”
µ̈⊥(0) - changes in the first-order derivatives that are responsible for
curving of the projection manifoldΩ
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Missing Data

Data pointtn divided into anobserved componentton and amissing
componenttmn .

Having agenerative probabilistic model of the datacan help us todeal
with missing values in a principled manner - treat them as latent variables!

tn
m

tn
o
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Toy Example – Missing Data
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After 15 iterations of training.

o – complete data points
+ – centers of the Gaussian mixture components
* – Filled in missing values
discs – 2 standard deviations of the noise model.
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Hierarchy of GTMs
Top level visualization

This looks interesting!
This looks interesting!

Level 2

Level 3

Level 1
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3 types of hidden variables!

1. Wedo not knowthe exactassignments of pointstn to GTMsN at
level ℓ, but we do havemodel responsibilitiesP (N| tn) from the
previous step.
P (N| tn) is the posterior probability that GTMN generatedtn.

2. AssumingthatGTM N at levelℓ generatedtn, wedo not knowthe
exactassignments of its childrenM at levelℓ+ 1 to tn. We can
calculateparent-conditional responsibilitiesP (M| N , tn)

3. AssumingthatGTM M at levelℓ+ 1 generatedtn, wedo not know
the exactassignments of its latent space centersxMi to tn. We can
evaluateRM

i,n
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Toy Example – HGTM

−4

−2

0

2

4

−4

−2

0

2

4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

Training set

x2

y

−4

−2

0

2

4

−4

−2

0

2

4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Data + child projection manifolds

Probabilistic Modelling in Machine Learning – p.60/126



Toy Example – HGTM plots
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Oil data

Data set arises from a physics-based simulation of non-invasive monitoring
system, used to determine the quantity of oil in a multi-phase pipeline
containing a mixture of oil, water and gas

1000 pointsin 12-dim space

Points in the data set are classified into3 different multi-phase flow
configurations– homogeneous, annularandlaminar
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Hierarchical GTM - Oil data
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Understanding the plot
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Magnification factors
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Directional Curvatures
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Let’s get crazy - GTM in the model space!

Other data types=⇒ other noise models

Latent space

Centres  x

RBF net

Data space  tn

i

Projection manifold
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Other data types=⇒ other noise models

Probabilistic framework is convenient- wecan deal with arbitrary
data types as long as an appropriate noise model can be formulated.

The principle will be demonstrated on sequential data, but extensions
to other data types (graphs) are possible.

Forsequential data

neednoise modelsthat take into accounttemporal correlations
within sequences, e.g. Markov chains, HMMs, etc.
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Latent Trait HMM (LTHMM)

GTM with HMM as the noise model!

For each HMM (latent center) we need to parameterize several
multinomials

initial state probabilities

transition probabilities

emission probabilities (discrete observations)

Multinomials areparameterized through natural parameters.

Probabilistic Modelling in Machine Learning – p.69/126



LTHMM

alphabet ofS symbols,S = {1, 2, ..., S}.

Consider a set of symbolic sequences,s(n) = (s
(n)
t )t=1:Tn

,
n = 1, 2, ..., N

With each latent pointx ∈ H, weassociate a generative distribution
(HMM with K hidden states)over sequencesp(s|x).

p(s|x) =
∑

h∈KTn

p(h1|x)
Tn
∏

t=2

p(ht|ht−1,x)

Tn
∏

t=1

p(st|ht,x)

Assuming independently generated sequences, the likelihood is

L =

N
∏

n=1

p(s(n)) =

N
∏

n=1

1

C

C
∑

c=1

p(s(n)|xc).
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Smooth manifold in the k-state HMM space

LTHMM parameters are obtained through a parameterizedsmooth
non-linear mapping from the latent space (global coordinate chart) into the
HMM natural parameter space (another global coordinate chart).

g(.) is the softmax function (the canonical inverse link function of
multinomial distributions)

gk
(

(a1, a2, ..., aℓ)
T
)

=
exp{ak}

∑ℓ
i=1 exp{ai}

, k = 1, 2, ..., ℓ,

Free parameters:A(π) ∈ R
K×B, A(T l) ∈ R

K×B andA(Bk) ∈ R
S×B
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From latent points to (local) noise models

π(x) = {p(h1 = k|x)}k=1:K

= {gk(A
(π)φ(x))}k=1:K

T (x) = {p(ht = k|ht−1 = l,x)}k,l=1:K

= {gk(A
(T l)φ(x))}k,l=1:K

B(x) = {p(s
(n)
t = s|ht = k,x)}s=1:S,k=1:K

= {gs(A
(Bk)φ(x))}s=1:S,k=1:K
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Riemannian manifold of HMM

H

M

+1

+1

−1

x + dx

x

x1

x2

p(.|x+dx)

p(.|x)

V

2-dim manifoldM of local noise models (HMMs)p(·|x) parameterized
by the latent spacethrough a smooth non-linear mapping.
M is embedded in manifoldH of all noise models of the same form.
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Riemannian metric

Latent coordinatesx aredisplaced tox+ dx.
How different are the corresponding noise models (HMMs)?
Need to answer this in a parameterization-free manner...

Local Kullback-Leibler divergencecan be estimated by

D[p(s|x)‖p(s|x+ dx)] ≈ dxTJ(x)dx,

whereJ(x) is theFisher Information Matrix

Ji,j(x) = −Ep(s|x)

[

∂2 log p(s|x)

∂xi∂xj

]

that acts like ametric tensoron the Riemannian manifoldM
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LTHMM - Fisher Information Matrix

HMM is itself a latent variable model.
J(x) cannot be analytically determined.

There are several approximation schemes and an efficient algorithmfor
calculating theobservedFisher Information Matrix.
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Induced metric in data space

Structured data types - careful with the notion of a metric in the data space.

LTHMM naturally induces a metric in the structured data space.

Two data items (sequences) are considered to be close (or similar)if both
of them are well-explained by the same underlying noise model (e.g.
HMM) from the 2-dimensional manifold of noise models.

Distance between structured data items is implicitly defined by the local
noise models that drive topographic map formation.

If the noise model changes, the perception of what kind of data items are
considered similar changes as well.
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LTHMM - training

Constrained mixture of HMMs is fitted byMaximum likelihoodusing an
E-M algorithm

Two types of hidden variables:

which HMM generated which sequence
(responsibility calculations is in mixture models)

within a HMM, what is thestate sequenceresponsible for generating
the observed sequence
(forward-backward-like calculations)
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Two illustrative examples

Toy Data
400 binary sequences of length 40 generated from4 HMMs (2
hidden states) withidentical emission structure(the HMMsdiffered
only in transition probabilities). Each of the 4 HMMs generated 100
sequences.

Melodic Lines of Chorals by J.S. Bach
100 chorales. Pitches are represented in the space of one octave,i.e.
the observation symbol space consists of 12 different pitch values.
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Toy data

State Transitions
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Bach chorals
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Topographic formulation regularizes the model
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Topographic organization of eclipsing binaries

Line of sight of the observer is aligned with orbit plane of a two star
system to such a degree that the component stars undergo mutualeclipses.

Even though the light of the component stars does not vary, eclipsing
binaries are variable stars - this is because of the eclipses.

The light curve is characterized by periods of constant light withperiodic
drops in intensity.

If one of the stars is larger than the other (primary star), one will be
obscured by a total eclipse while the other will be obscured by an annular
eclipse.
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Eclipsing Binary Star - normalized flux
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Eclipsing Binary Star - the model

ap
i

m

q.m

Parameters:
Primary mass:m (1-100 solar mass)
mass ration:q (0-1)
eccentricity:e (0-1)
inclination: i (0o − 90o)
argument of periastron:ap (0o − 180o)
log period:π (2-300 days)
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Empirical priors on parameters

p(m, q, e, i, ap, π) = p(m)p(q)p(π)p(e|π)p(i)p(ap)

Primary mass density:

p(m) = a×mb

a =







0.6865, if 0.5×Msun ≤ m ≤ 1.0×Msun

0.6865, if 1.0×Msun < m ≤ 10.0×Msun

3.9, if 10.0×Msun < m ≤ 100.0×Msun

b =







−1.4, if 0.5×Msun ≤ m ≤ 1.0×Msun

−2.5, if 1.0×Msun < m ≤ 10.0×Msun

−3.3, if 10.0×Msun < m ≤ 100.0×Msun
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Empirical priors on parameters

Mass ratio density
p(q) = p1(q) + p2(q) + p3(q)
where
pi(q) = Ai × exp(−0.5 (q−qi)2

s2
i

)

with
A1 = 1.30, A2 = 1.40, A3 = 2.35
q1 = 0.30, q2 = 0.65, q3 = 1.00
s1 = 0.18, s2 = 0.05, s3 = 0.10

log-period density

p(π) =

{

1.93337π3 + 5.7420π2 − 1.33152π + 2.5205, if π ≤ log1018

19.0372π − 5.6276, if log1018 < π ≤ log10300

etc.
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Flux GTM

Smooth parameterized mappingF from 2-dim latent space into the space
where 6 parameters of the eclipsing binary star model live.

Model light curves are contaminated by an additive observational noise
(Gaussian). This gives a local noise model in the (time,flux)-space.

Each point on the computer screen corresponds to a local noise model and
"represents" observed eclipsing binary star light curves that arewell
explained by the local model.

MAP estimation of the mappingF via E-M.
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Outline of the model (1)
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Outline of the model (2)

p(O|x)

H

ΩH

Distribution space

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

phase

flu
x

(x)Γf
J

ΩJ

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

phase

flu
x

Apply Gaussian obervational noise

Apply physical model

Regression model space

Probabilistic Modelling in Machine Learning – p.89/126



Artificial fluxes - projections
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Artificial fluxes - model
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Real fluxes - clustering mode
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Off-the-shelf methods may produce nonsense!
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Real fluxes - projections + model

Primary mass Mass ratio Eccentricity

Inclination Argument Period
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3-color cDNA microarrays

Traditional dual-color cDNA microarrays – 2 different fluorescence
dyes corresponding to two samples (e.g. “normal” and “disease”).

3-color cDNA microarrays – 3rd dye associated with yet another
sample hybridized to a single microarray.

Assess effects of a drug – essay hybridizing three samples:
normal(dyed red),disease(dyed green),drug-treated(dyed blue).

IntensitiesR, G andB reflect expression levels of the genes in the
normal (healthy), disease and drug-treated samples, respectively.
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hexaMplot [Zhao06]

2-dim representation of R, G and B intensities suited for assessing
the drug effect on essayed genes

hexaMplot coordinates: log ratios of intensity pairs
x1 = log2B/G andx2 = log2G/R.

Genes in theupper and lower half-planeareup- and down-regulated,
respectively, by the disease.

Genes in theleft and right half-planeareup- and down-regulated,
respectively, by the drug treatment, compared with the disease
sample.

Slant axisx2 = −x1 ⇒ log2B/R = 0. Expression levels of genes
in the normal and drug-treated samples are the same.
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hexaMplot
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Assessing drug effects through hexaMplot

Drug neutralizes the effect of the disease on the essayed genes –
gene representations cluster around the slant axis.

Deviations form the slant axis within the 4th and 2nd quadrants
(x1 > 0, x2 < 0 andx1 < 0, x2 > 0, respectively) –still represent
drug effects in the right direction.

Genes in 1st and 3rd quadrants(x1, x2 > 0 andx1, x2 < 0,
respectively) –undesirable effect of the drug:
enhancing the up-regulation, or suppressing the down-regulation of
the gene by the disease.
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Past work

[Zhao06 ] – correlation coefficient of hexaMplot gene representations
calculated and assessed for statistical significance.

[Zhao07 ] – more involved analysis.
Detect groups of genes with similar expression patterns relative to
the disease and the drug.

- Each such group is alignTed along aline raystarting in the
hexaMplot origin.
- Directionof the ray signifies whether the drug has positive or
negative effect.
- Anglemeasures the drug effect level

The lines were detected through Hough Transform
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H Transform
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H Transform
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Problem 1

HT applied to the differentially expressed genes only.
Their detection done through fitting a global bi-variate Gaussian on
hexaMplot gene representations and then applying a probability
density threshold.

- “Hard” separation of genes into equally vs. differentially expressed
genes is not optimal – typically there will be a high density ofgenes
around the separating confidence ellipse.

- Results can be sensitive to the particular choice of the confidence
value defining what is differentially expressed and what is not.
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Problem 2

HT implicitly imposes a noise model that does not fit the natureof
hexaMplot representations well.

- Induced noise model depends on the line parametrization used.

- (x1, x2) hexaMplot representations are negatively correlated and
there is no direct way of representing this fact in the standard HT.
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Problem 3

Determination of the quantization level in the Hough space should
reflect the amount of “measurement” noise in the hexaMplot
features.

The quantization level determines the amount of smoothing in the
Hough accumulator, which in turn has an effect on the number of
distinct peaks (detected lines) in the Hough space.
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Problem 4

Given a detected line, there is no principled way of quantifyingthe
strength of association of the points with that line.
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Our proposal – probabilistic HT

Address these shortcomings in the framework of aprincipled
probabilistic model based formulation.

All essayed genes are considered. The weaker and stronger
contribution of equally and differentially expressed genes is obtained
naturally in a “soft” manner from theprobabilistic formulation of the
model behind the hexaMplot.

The modelexplicitly takes into account the size and the negatively
correlated nature of the noiseassociated with hexaMplot gene
representations.

Both thestrength of association of individual genes with a particular
group(line ray in hexaMplot) and thesupport for the group by the
selected genescan bequantified in a principled mannerthrough
posterior probabilities over the line angles, given the observations.
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Probabilistic HT
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The model

A line ray inR2 (hexaMplot space) starting in the origin at an angle
α ∈ [−π/4, 7π/4).

Bi-variate zero-mean Gaussian measurement noise with covariance
matrixΣX . The density of possible measurements
x = (x1, x2)

T ∈ R
2 corresponding to the point(r cosα, r sinα) on

the line is given by

p(x|α, r) =
1

2π|ΣX |1/2

exp

{

−
1

2
(xT − (r cosα, r sinα)) Σ−1

X (x − (r cosα, r sinα)T )

}

,

wherer > 0 is the (Euclidean) distance of the point on the line from
the origin.
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The model - contd’

Prior knowledge about the parameter values
(α, r) ∈ [−π/4, 7π/4)× [0,∞), summarized in the form of a prior
distributionp(α, r).

Given an observationx, the induced uncertainty in the parameter
space is given by the posterior

p(α, r|x) =
p(x|α, r) p(α, r)

∫

[π/4,7π/4)×[0,∞) p(x|α
′, r′) p(α′, r′) dα′dr′

.

To obtain the amount of support for the angle parameterα given the
observationx, we integrater from the posterior:

p(α|x) =
∫

[0,∞)
p(α, r|x) dr.
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The model - contd’

Given a set of observationsD = {x1, x2, ..., xN}, xi ∈ R
2,

i = 1, 2, ..., N , accumulate the evidence contributions in the Hough
spaceH

H(α;D) =
1

N

N
∑

i=1

p(α|xi).

Given that a line candidate with inclination angleα has been
detected by inspecting the peaks of the Hough accumulatorH(α;D),
one can ask which points fromD are strongly associated with it.
Consult the posteriorsp(α|xi), i = 1, 2, ..., N , and select points
above some threshold valueθ.

To enhance the threshold interpretability, we discretized the angle
spaceH into a regular gridG = {α̃1, α̃2, ..., α̃M} and turned the
densitiesp(α|x) into probabilitiesP (α̃j |x) over theG.
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The model - contd’
Calculate the probability thresholdθ ∈ (0, 1) asθ = κ/M ,
κ ∈ (0,M), meaning that only observations with posteriors at leastκ
times greater than the uninformative distribution1/M will be
considered.

Given a probability thresholdθ and a (discretized) anglẽα, the set of
selected points that support the line rayα̃ reads:

Sθ(α̃) = {x | x ∈ D, P (α̃|x) ≥ θ}.

Check how much the set as a whole supports that line ray through the
posterior

P (α̃|Sθ(α̃)) =
p(Sθ(α̃)|α̃) P (α̃)

∑

α̃′∈G p(Sθ(α̃)|α̃′) P (α̃′)
,

whereP (α̃′) is the prior distribution over the gridG.
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The model - contd’

Assuming independence of observations

p(Sθ(α̃)|α̃
′) =

∏

x∈Sθ(α̃)

p(x|α̃′)

=
∏

x∈Sθ(α̃)

∫ ∞

0
p(x|r, α̃′) p(r|α̃′)dr.

Here,p(x|r, α̃′) is the noise model andp(r|α̃′) is the conditional
prior onr.
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Noise model
It is usual to assume that the log intensities are normally distributed.

x = (x1, x2)
T =

(

log
B

G
, log

G

R

)T

.

Consider 3 random variables (log intensities)Y1, Y2 andY3
representinglogB, logG andlogR, respectively.hexaMplot
representations(x1, x2) correspond to two random variables
X1 = Y1 − Y2 andX2 = Y2 − Y3 coupled throughY2.

Even if we assume that the individual measurement errors of the
three log intensitiesY1, Y2 andY3 are independent, the implied noise
in the hexaMplot coordinatesX1, X2 will be negatively correlated.
This simply follows from that fact that whileY2 contributes
negatively toX1, its contribution toX2 is positive.
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Noise model

Assuming that the measurement noise of the log intensityYi is a zero
mean Gaussian with varianceσ2

i , i = 1, 2, 3, (X1, X2) will be
Gaussian distributed with covariance matrix

ΣX =

[

σ2
1 + σ2

2 −σ2
2

−σ2
2 σ2

2 + σ2
3

]

. (1)

We assume equal levels of measurement noise across the three
colors,σ2 = σ2

1 = σ2
2 = σ2

3,

ΣX = 2σ2

[

1 −1
2

−1
2 1

]

. (2)
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Toy example
x1 = (0.1,−0.1)T , x2 = (−1, 0)T andx3 = (−1.75, 1.75)T
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Real data

Analyse action of the drug Rg1 (dominant compound of the extract
of ginsenosides in ginseng) on homocysteine-treated human
umbilical vein endothetial cells (HUVEC).

1128 genes assayed in four microarrays (4 repeats under the same
experimental conditions).

Usual data normalization.
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hexaMplot
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Need a dedicated grouping mechanism...

GMM model + model evidence
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Probabilistic HT - detected line rays

σ = 0.05, Sθ(α) chosen usingM = 126 andκ = 25
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Probabilistic HT - accumulator
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Detected line rays

The shortest intervals(α̃−(σ), α̃+(σ)) containing the estimated line angles
and 95% of the posterior massP (·|Sθ(α̃)) around them. The intervals are
shown for three levels of observational noise:σ = 0.05, σ = 0.3 and
σ = 1.0.

line α̃ (α̃
−
(0.05), α̃+(0.05)) (α̃

−
(0.3), α̃+(0.3)) (α̃

−
(1.0), α̃+(1.0))

1 -0.685 (-0.735,-0.684) (-0.736, -0.683) (-0.885,-0.535)

2 -0.585 ( -0.635,-0.584) (-0.635, -0.535) (-0.785,-0.435)

3 -0.285 (-0.335,-0.284) (-0.385, -0.235) (-0.685,-0.235)

4 1.965 (1.914,1.966) (1.665, 2.265) (-0.035, 3.015)

5 2.215 (2.165,2.216) (2.015, 2.365) (1.565, 2.765)

6 2.465 (2.415,2.466) (2.265, 2.615) (1.865, 3.015)
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Support for the detected groups

PosteriorsP (α|Sθ(α)) of the six detected lines (gene groups) for two
levels of observational noise:σ = 0.05 (a) andσ = 0.3 (b).
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GO analysis

line |Sθ(α̃)| GO term ID # genes # genes fromSθ(α̃) p-value

1 80 GO:0002675 87 37 0.00173

GO:0002525 85 36 0.00242

GO:0006953 85 36 0.00242

GO:0002527 86 36 0.00322

GO:0002543 86 36 0.00322

GO:0002539 60 27 0.00441

GO:0002540 60 27 0.00441

2 64 GO:0044424 176 41 0.00000

GO:0044444 175 41 0.00000

GO:0044446 168 39 0.00294

GO:0030117 165 38 0.00437

GO:0045265 162 37 0.00536

3 71 GO:0005488 178 51 0.00000

GO:0050794 163 55 0.00295
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GO analysis

The first three lines with angles in(−π/4, 0) represent genes with
(R,G,B) intensities satisfyingG < R < B.

The disease decreases expression of a gene, compared with its
normal expression levelR, i.e.G < R. The drug eliminates this
effect by overexpressing the genes,B > R.

Genes in the group corresponding to the 1st line are related to acute
inflammatory response (GO:0002675, GO:0002525) increasing for
example the concentration of non-antibody proteins in the plasma
(GO:0006953), or increasing the intra- or extra-cellular levels of
prostaglandin (GO:0002539) and leukotriene (GO:0002540).
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GO analysis

The 3rd line groups genes that are related to binding mechanisms
(GO:0005488) and breakdown of neutral lipids (GO:0046461),
membrane lipids (GO:0046466) and glycerolipids (GO:0046503).

The disease also down-regulates genes related to pathways of the
complement cascade which allow for the direct killing of microbes
as well as regulation of other immune processes (GO:0001867,
GO:0006957). The drug Rg1 corrects this situation by stimulating
the pathways.
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GO analysis

The 4th and 5th lines with angles in(π/2, 3π/2) represent genes
with (R,G,B) intensities satisfyingR < B < G.

Compared with its normal expression level, the expression of a gene
is increased by the disease (G > R). The drug partially eliminates
this effect by reducing the expression level toB, leavingB still
above the normal expressionR.

The 6th line withα ∈ (3π/2, π) groups genes with(R,G,B)
intensities satisfyingB < R < G.

The disease causes increased expression of a gene (G > R) and the
drug compensates for this effect by driving the gene expression
below the normal level (B < R).

While genes grouped together by the 4th line are associated with
immune and chronic inflammatory response, the genes
corresponding to the 5th and 6th lines are again related to cellular
components and mechanisms effected by the disease.
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