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Framework

® In machine learning and statistics, we often observe sample
data {z;} of {Z;} from some data generating process
(DGP).

m Inference must be drawn regarding {z;} via some objective
function of the data Q, (@), which is dependent on a

parameter vector 0 in a Euclidean space ©.

m When the sequence is of length n € N, the parameter of
interest can often be estimated from the data, via the

extremum estimator (cf. Amemiya, 1985, Ch. 4):

énzarg{,“eig Qn(0) or arg max Qn(0).
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A familiar example (1)

m Suppose that we assume the DGP has distribution with

marginal normal mixture model density
er Z 71:1 Z/r.ula , )

where = (U1,...,Um) € [_L7L]m'
6= (o....,02) € [51,5]", and

neSm1:{(nl,...,nm):ﬂjzo,an:I},

=

for large L and S > 1. Here 0 contains u, 6 and &, and

O=[-L,L]"x[S5]" xSm1.



A familiar example (2)

m We wish to obtain a maximum likelihood estimator é,,,

which we can define as

éne{en:Qn(On)—rgaé Qn (6 Zlogf zi; 0 }

m Due to the simplex constraint (i.e. T € Sp-1), We must solve
for the first order condition (FOC)

(VA)(8,14) =0,
where V is the gradient operator and
AOA)=Qr+A (Zny—l) ,
j=1

is the Lagrangian (4 is the Lagrange multiplier).
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A familiar example (3)

m Recall that the normal probability density function (PDF)

has form

2
¢ (zii1j,07) = ! eXp<_1(z'ff)>_

\/ﬁ 2 o
J

J

m For each j,

oA n 7 ¢ (z,-; W, 61'2)

gn y |
I; ;:Zif(zi;e) oL

N & 7 ao (z,-;yj,cj?)
07 LT e

J i=1
N oo
o B 7o)’
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A familiar example (4)

m It is not difficult to see that the system is highly nonlinear and
a one-step closed-form solution is not available for the FOC.

m A multi-step iterative algorithm is required to solve the
problem.

m There are many available methods for solving the problem
(e.g. Newton algorithm, expectation-maximization algorithm,

stochastic algorithms, etc.; see for example Berchtold, 2004).

m We will investigate the use of the MM approach of Hunter
and Lange (2004) and Lange (2016).
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The MM algorithm (1)

m The abbreviation MM can stand for two things:
® majorization-minimization, when the problem is to minimize
an objective Q,(0).
® minorization-maximization, when the problem is to

maximize an objective Q,(0).

m Historically, the MM algorithm framework dates back before
Hunter and Lange (2004), who first used the terminology
“MM algorithm”.

m The basic principle was expressed in Ortega and Rheinboldt
(1970, Sec. 8.3).

m Application to multidimensional scaling was considered by de
Leeuw (1977).

m The quadratic upper-bound principle was analyzed in Bohning
and Lindsay (1988).



The MM algorithm (2)

m Although we discuss the minimization problem, the
maximization problem is the same, mutatis mutandis.

m Suppose we wish to minimize some difficult to manipulate
function g (x), with respect to x € X, where X is a Euclidean
space.

m Here, the difficulty of g may be due to lack of differentiability,
awkward FOC, etc.

m Define a function g(x,y) to be a majorizer, if it satisfies the

conditions:
(A) For each x € X, g(x) =g (x,x).
(B) Foreach y #x, x,y €X, g(x) <g(x,y).

m Define a minorizer by flipping the inequality in (B).
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The MM algorithm (3)

Figure: Majorizers g(x,y) and g(x,z) of g(x).
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The MM algorithm (4)

m Pick some initialization value x(©) € X.
m We define the majorization-minimization algorithm via the

following scheme:

For each s € N, define

x) = argmin g (x,x(s_l)) : (1)

xeX
and stop when some criterion is met.

m A majorization-minimization algorithm is defined by replacing

the argmin by argmax, in (L))
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The MM algorithm (5)

g_bar(x,x_1)
g_bar(x,x_0)

g_bar(x,x_2)

g_bar(x,x_3)

Figure: An MM algorithm that is run for 4 iterations. .



The MM algorithm (6)

m From Figure 2, we can observe the monotonic descent

property of the MM algorithm.

m We can easily prove the descent property as follows:

For any s, (A) implies

By (1)),

Finally, by (B),
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Some useful majorizers (1)

m Note that all majorizers turn into minorizers when one
switches the words convex/concave and positive/negative

definite, and the inequality signs.

m All results arise from Lange (2013, Ch. 8) and Lange (2016,
Ch. 4).

Suppose that g (x) is a concave function, for x € X in a Euclidean

space. We can majorize g at y via the supporting hyperplane

g(x,y)=g(y)+(Vg)(y)(x—y).
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Some useful majorizers (2)

A

> x

Figure: An example of the supporting hyperplane majorizer.
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Some useful majorizers (3)

Suppose that g(x) is a convex function with respect to
x € X=RR% (the positive cone in R?, p € N). Also let ¢ € Rf be a

vector of constants. Via Jensen’s inequality, we can majorize

g(ch) at y by

m T
_ ¢y (¢
g(x,y)z):“g< yx,->,

Yi

where ¢ =(c1,...,6p), X =(X1,...,%p), and y = (y1,--.,¥p).
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Some useful majorizers (4)

Let H be the Hessian operator (i.e. Hg = d%g/dxdx"). Let g(x)
be a function with bounded curvature, in the sense that there
exists a matrix C, such that C— (Hg)(x) is positive semidefinite

for all x € X. We can majorize g at y by

20y) =8 (x) +(Va) () (x—y) + 5 (x—y) Clx—y).
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Some useful majorizers (5)

Let x € X=R" and define

P
g(x)= HXiq'
j=1
where ¢ € Rp Further define C = Z —1 G- Then, via the

arithmetic-geometric mean inequality, we can majorize g at y

by
()26
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Some useful majorizers (6)

m Along with the majorizers that have been presented, we also
note that majorization satisfies the following property.

m Transitivity (i.e. if, @ majorizes g at y, and g majorizes g at
y, then g majorizes g at y).

m Majorization is closed under summation (i.e. if g majorizes
g1 at y and g majorizes g» at y, then g + g majorizes
g1tg aty).

m Majorization is closed under non-negative multiplication
(i.e. if g1 > 0 majorizes g1 > 0 at y and g» > 0 majorizes
g >0 at y, then g8 majorizes g1g» at y).

m Majorization is closed under composition with an
increasing function (i.e. if g majorizes g at y and his an

increasing function, then hog majorizes hog at y).
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Normal mixture models (1A)

m Let g(x) =log (1" x) (a concave function), where

x € X=TR". Using the Jensen's inequality majorizer, the

following minorizer was proposed by Zhou and Lange (2010):

g(xy)= Y —F—log(x)— ¥, = log( R )

j= 121( 1Yk j= 1Zk:1)/k Zk:1Yk

m Make the substitutions x; = ;¢ (z,-;;,tj,gj?) and

Y= 71'(5 1)¢ (Z,,[.LJ(S 1),Gj(sfl)2> .
m Rewrite g(x) = g;(0) as

= log [Z T z, Hj, O ] :
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Normal mixture models (1B)

m We can then write g(x,y) =g; (9, 9(5*1)) as

5(0.6°7) = %5(2:00) log(m) +logo (zik o)
~G (6t),

where 7j(z;;0) = mj¢ (z,-;uj,cf) /f(z;;0) and

G (60°0) = L5 (m:0 V) og 5 (z: 0 V)|



Normal mixture models (1C)

m Notice that the log-likelihood Q,(0) =Y ;logf(z;0) can

be written as Q, = Y./_; g, and thus we can minorize Q,(0)

by
Q(O;G(s—l)) = i_iljifj(zi;e(s—n)log(ﬂj)
i=1j=1

n

e (e(s—l)).

i=1
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Normal mixture models (1D)

m Expand out

6 (aim1:05) = (2m02) oo (e 17/ (207)] to gt

Q(O;O(sfl)) = ﬁiifj(ZI )Iog(ﬂj)
SEE s (e )esta)
_IZIJZTJ( )w

where C is a constant that is not dependent on 8.

Cl
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Normal mixture models (1D)

m Construct the Lagrangian

A(O,1) = Q(@;f)“*”) A (i nj—1> ,
Jj=1

and compute VA (0, 1) to obtain the FOC, for each j,

a/\(evl)_ -1 : (,.p(s—1) _
Tnj_nj i_zi‘cj(z,,e )+A—0,
INOA) & (a1 E W
IH _,;TJ<Z"G ) o} -0
INOA) 1 & s (zi — )
Jof _2,:erj<z"6 ) o7 (a?)’ -
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Normal mixture models (1E)

m Solving the FOC yields the MM algorithm update at the sth

step, 0(5), which contains, for each j:
n_J(s) n_l ;1{, (Zi; 9(571)) ’

YT (Zi; 9(371)> zi
Y1 (Zi; 9(571)> ,

u

and

o2 = H1Y (207 7) (-7
YT (Zi? 9(571))
m Note that this is exactly the expectation-maximization
algorithm for maximum likelihood estimation for normal

mixtures (this is a coincidence; see Meng, 2000).
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The EM algorithm (1)

The MM algorithm (for maximization) is a generalization of
the EM algorithm, in the sense that every EM algorithm is an
MM algorithm.

Suppose that Z = (U, V) is a random variable, and suppose
that we only observe U but not V, at u.

Write the PDF of U with respect to some parameter 8 € © as
f(u;0).

If we know both U and V, then we can write the PDF of Z
as f(z;0) (the complete-data likelihood).

Starting from some initial parameter 60, the EM algorithm
proceeds by computing, at the sth step,

0 = arg max Eé‘)/(‘s;:)u [logf(Z;0)].
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The EM algorithm (2)

m Consider the sequence of arguments:

log (u; 0)

Y

log ES [ (U|V = v; 0)]
f(V\U: u;9(571)> f(UV=v;0)
F(VIU=u0¢)

[
logEy,

f(V;0)f(UIV=v;0)
f (V]U = u;G(Sfl))

o(s—1)
IogEv‘ U—u

(s-1) f(V:0)f(UV=v;0
E?/‘Ul:u log (v;6)f (U] v )
f(Viu=uet)

(s-1)
EYjy-ullogf (Z: 6)]

(s-1) .
—EY L, [logf (VU = u;6CD))]

26
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The EM algorithm (3)

m Set
g(0)=logf(u;0),
and
_ . (s-1)
g(e;e< 1>) = E?,w_u llog £ (Z; 0)]

—EV‘U u [Iogf(V\ = u;B(S_l)ﬂ i

m Since the second term of g (9; 9(5_1)) does not depend on 8,

we can write the EM step as the MM step

(s) = z(0-06—1
?] _argrg1€aé< g(0,0 )
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A modern example (1)

m Suppose that we observe data {z;}, where each z; = (uj, v;),
with uj e U=RP and v; € {—1,+1}.

m Suppose that we wish to construct a linear classifier that
minimizes, with respect to @ € RPT!, the average

classification loss

n

1
h(8)==Y Hv; # sign (E,TB)]] .
mi=
m sign(a)=-1ifa<0, +1if a>0.
m [A] is the Iverson bracket, which takes value 1 if A is true and

0 otherwise.

| i'l,' = (1,u,~).
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A modern example (2)

m The problem of obtaining

~

6,=arg min_ [,(0)

OcRprl
is highly ill-conditioned and combinatorial.

m We can instead replace the average classification loss, by the

average hinge loss

where
h(z:0) = [1—v,.a,TeL,

and [a], = max {0, a}.
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A modern example (3)

hinge loss

classification

A

o
v
=

Figure: Example of loss functions, where w = EI,TO and v; = 1.
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A modern example (4)

m Suppose that we penalize the components of 8 that

correspond to u; by
pen(0)=16"10,

where A >0

m The problem:
6,=arg min g(0),

OcRr+1
where g(8) = /" (0)+pen(8) is the classical soft-margin
support vector machine (SVM) problem of Cortes and
Vapnik (1995).
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An MM for the SVM (1)

m The following derivation is from Nguyen and McLachlan
(2017).

m Using the supporting hyperplane inequality, we can majorize
g(a)=+va(xeRy), at b, by

_ 1
g(a,b):x/mm(a—b).

m If we substitute x2 in for a and y2 in for b, then we can
majorize g(x) =V x2 =|x|, at y #0, by

(x*—y?)
2]yl
|

7_’_7
2|yl

g(xy)=lyl+

32/51



An MM for the SVM (2)

m Consider the identity:

la—b| a+b
_|_

max{a,b} = 5 >

which implies that [a], = |a| /2+a/2.

m Using the previous result, we can majorize g(x) = [x] ., at
y #0, by

Iy\ X
:(XHyI)
4ly|
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An MM for the SVM (3)

m Using the Jensen's inequality majorizer, for small € > 0, we
can majorize g(x) = Vx%>+¢, at y, by

2.2
_ 5 (x*=»?)
gx,y)=vy +e+ )
(x.5) —
m Approximate [x], by g(x) =vx2+¢€/2+x/2, for small
€ > 0. We can majorize g(x) by
2
Vs

g(x,y)=
N
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An MM for the SVM (4)

m For small € >0, we can approximate g(8) = /"(0)+pen(8)
by

1{ -
g:(0)= - Y gf(0)+A0710,
i=1

where

\/(1 — v;fliTO)2+£ N 1—vi1] 0

i
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An MM for the SVM (5)

m Using the previously derived majorizer, we can majorize g; (6)

at some 6071 by

[1-viy 0+ (66
e (0(5*1))

where ¥¢ (9(5_1)> = \/<1 = v,-[l,-TO(s_l)>2 +e€.

m Thus, we can majorize g¢ (0), at PG by

8 (6,0(5_1)> =

z:(0.67) = Zg:( 0C71) 4 207i0.

36
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An MM for the SVM (6)

m For each s, write
,ygs—l) — (14_}{ <9(5—1)> N Y. (9(s—l)>)

and let WE,S*” be a diagonal matrix with ith element
-
A

m Let V, contain v;i1; in the ith row.

m We can write g (0,6(5*1)> as

% (7&,5‘1) —vne)ngsfl) (,A;—U _vne) +20776.
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An MM for the SVM (7)
m The MM update

(s) = T (s-1)
0 = argeganp+1 Ze (9,9 )

is a weighted linear ridge regression problem.

m We can obtain the form of the update by solving the FOC
(Vg:)(0) =0, where

Vi — —%vjw#‘” (ygs—l)—vne)
+2A10.

m We thus obtain the iteratively reweighted least-squares

updates

G (VIW(nH)Vn + nﬂti) TVIWE D),
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A convergence result (1)

m Let g(x) be the objective of interest, where x € X C RP and
let d € X. We say that the directional derivative of g with

respect to d is

g(x+td)—g(x)

! = f g(x .

gq(x) =limin ;

m We say that a x* is a stationary point of g, if g;;(x*) >0,
for all d such that x*+d € X.

m In the case where g is a differentiable function, the definition

is equivalent to (Vg)(x*)=0.
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A convergence result (2)

(A1) Let g(x,y) majorize the objective g(x) (x € X), at y, by
satisfying Assumptions (A) and (B).

m Starting from some initialization x(%), we denote the limit
point of the MM algorithm by

x) = lim x(9) < oo,
S—ro0

where x(®) = argmingex & (6, 9(571)>.
m Theorem 1 of Razaviyayn et al. (2013) states the following:
Under Assumption (Al), every limit point x() is a stationary point

of the problem
min g (x).

xeX
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Convergence of the SVM MM (1)

m Assumption (Al) is automatically fulfilled, by construction of
the MM algorithm.

m We must therefore show that the updates
AT
6) = (VIWE v, + mal) viwE Dy

globally minimizes the majorizer ge (9;0(5_1)>.

m In
LA va0) WE (YD -v,6) 12676,

both WS,S‘” and 1 are at least positive semidefinite, thus the
stationary point of g is also a global minimum (since g is
convex).

m Thus, the limit point ) (starting from some 6(%)

converges to a stationary point of ge.

41/51



Convergence of the SVM MM (2)

m Recall that T
g:(0)= - Y gf(0)+206716,
i=1

where

~Tn\2 .
e _ \/(1_Viu,' 9) +£ 1—v,-u,-T6

m For the function h(x) = v'x2+¢€ (€ > 0) we can obtain the

second derivative

W (x)=¢/(x2+€)** > 0.
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Convergence of the SVM MM (3)

m Since gf (0) is a convex composition of an affine function of
0, it is also convex (cf. Boyd and Vandenberghe, 2004, Sec.
3.2.2).

m Thus, every stationary point of g is a global minimizer.

m We have the improved result: starting from any 0, the limit

point 0 converges to a global minimizer of g;.
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Some recent developments

m Stochastic approximation type algorithms have been proposed
in Mairal (2013) and Razaviyayn et al. (2016).

m A stream-data suitable MM algorithm for SVM was proposed
in Nguyen et al. (2018).
m Convex analysis and finite-iteration analysis of MM algorithms
have been explored in Mairal (2015).

m Block-wise and cyclical MM algorithms have been explored
and analyzed in Razaviyayn et al. (2013) and Hong et al.
(2016).
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Further reading

m Numerous minorizers and majorizers for a variety of problems

are presented in Heiser (1995).
m A recent short review and tutorial appears in Nguyen (2017).

m MM algorithms, as applied to signal processing problems are
reviewed in Sun et al. (2017).

m Differences between EM and MM algorithms in some contexts
are explored Wu and Lange (2010).

m A comprehensive treatment of MM algorithms is presented in

the manuscript of Lange (2016).
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