
MM algorithms for statistical inference and
machine learning problems

Hien D. Nguyen1,2

1DECRA Research Fellow, Australian Research Council. 2Lecturer, Department of
Mathematics and Statistics, La Trobe University, Melbourne Australia.

(Contact–Email: h.nguyen5@latrobe.edu.au, Twitter: @tresbienhien, Website:
hiendn.github.io)

S4D, Caen, 2018 June 21

1 / 51



Framework

In machine learning and statistics, we often observe sample
data {zi} of {Zi} from some data generating process
(DGP).

Inference must be drawn regarding {zi} via some objective
function of the data Qn (θθθ), which is dependent on a
parameter vector θθθ in a Euclidean space Θ.

When the sequence is of length n ∈ N, the parameter of
interest can often be estimated from the data, via the
extremum estimator (cf. Amemiya, 1985, Ch. 4):

θ̂θθ n ≡ argmin
θθθ∈Θ

Qn (θθθ) or argmax
θθθ∈Θ

Qn (θθθ) .
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A familiar example (1)

Suppose that we assume the DGP has distribution with
marginal normal mixture model density

f (zi ;θθθ) =
m

∑
j=1

πjφ
(
zi ; µi ,σ

2
i
)
,

where µµµ = (µ1, . . . ,µm) ∈ [−L,L]m,
σσσ =

(
σ2
1 , . . . ,σ

2
m
)
∈
[
S−1,S

]m, and
πππ ∈ Sm−1 =

{
(π1, . . . ,πm) : πj ≥ 0,

m

∑
j=1

πj = 1
}
,

for large L and S > 1. Here θθθ contains µµµ, σσσ and πππ, and

Θ = [−L,L]m×
[
S−1,S

]m×Sm−1.
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A familiar example (2)
We wish to obtain a maximum likelihood estimator θ̂θθ n,
which we can define as

θ̂θθ n ∈

{
θθθ n : Qn (θθθ n) = max

θθθ∈Θ
Qn (θθθ) , Qn (θθθ) =

n

∑
i=1

log f (zi ;θθθ)

}
.

Due to the simplex constraint (i.e. πππ ∈ Sm−1), We must solve
for the first order condition (FOC)

(∇Λ)(θθθ ,λ ) = 0,

where ∇ is the gradient operator and

Λ(θθθ ,λ ) = Qn + λ

(
m

∑
j=1

πj −1
)
,

is the Lagrangian (λ is the Lagrange multiplier).
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A familiar example (3)
Recall that the normal probability density function (PDF)
has form

φ
(
zi ; µj ,σ

2
j
)

=
1√
2πσ2

j

exp
(
−1
2

(zi −µj)
2

σ2
j

)
.

For each j ,

∂ Λ

∂ µj
=

n

∑
i=1

πj
f (zi ;θθθ)

×
∂φ

(
zi ; µj ,σ

2
j

)
∂ µj

,

∂ Λ

∂σ2
j

=
n

∑
i=1

πj
f (zi ;θθθ)

×
∂φ

(
zi ; µj ,σ

2
j

)
∂σ2

j
,

∂ Λ

∂πj
=

n

∑
i=1

πj
f (zi ;θθθ)

φ
(
zi ; µj ,σ

2
j
)

+ λ .
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A familiar example (4)

It is not difficult to see that the system is highly nonlinear and
a one-step closed-form solution is not available for the FOC.

A multi-step iterative algorithm is required to solve the
problem.

There are many available methods for solving the problem
(e.g. Newton algorithm, expectation-maximization algorithm,
stochastic algorithms, etc.; see for example Berchtold, 2004).

We will investigate the use of the MM approach of Hunter
and Lange (2004) and Lange (2016).
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The MM algorithm (1)
The abbreviation MM can stand for two things:

majorization-minimization, when the problem is to minimize
an objective Qn (θθθ).
minorization-maximization, when the problem is to
maximize an objective Qn (θθθ).

Historically, the MM algorithm framework dates back before
Hunter and Lange (2004), who first used the terminology
“MM algorithm”.

The basic principle was expressed in Ortega and Rheinboldt
(1970, Sec. 8.3).
Application to multidimensional scaling was considered by de
Leeuw (1977).
The quadratic upper-bound principle was analyzed in Bohning
and Lindsay (1988).
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The MM algorithm (2)

Although we discuss the minimization problem, the
maximization problem is the same, mutatis mutandis.
Suppose we wish to minimize some difficult to manipulate
function g (x), with respect to x ∈ X, where X is a Euclidean
space.

Here, the difficulty of g may be due to lack of differentiability,
awkward FOC, etc.

Define a function ḡ (x,y) to be a majorizer, if it satisfies the
conditions:

(A) For each x ∈ X, g (x) = ḡ (x,x).

(B) For each y 6= x, x,y ∈ X, g (x)≤ ḡ (x,y).

Define a minorizer by flipping the inequality in (B).
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The MM algorithm (3)

Figure: Majorizers ḡ (x ,y) and ḡ (x ,z) of g (x).
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The MM algorithm (4)

Pick some initialization value x(0) ∈ X.

We define the majorization-minimization algorithm via the
following scheme:

For each s ∈ N, define

x(s) ≡ argmin
x∈X

ḡ
(

x,x(s−1)
)
, (1)

and stop when some criterion is met.

A majorization-minimization algorithm is defined by replacing
the argmin by argmax, in (1).
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The MM algorithm (5)

x
x_0

g(x)

g_bar(x,x_0)

x_1
x_2

x_3 x_4 

g_bar(x,x_1)

g_bar(x,x_2)

g_bar(x,x_3)

Figure: An MM algorithm that is run for 4 iterations.
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The MM algorithm (6)

From Figure 2, we can observe the monotonic descent
property of the MM algorithm.

We can easily prove the descent property as follows:

For any s, (A) implies

ḡ
(

x(s),x(s)
)

= g
(

x(s)
)
.

By (1),
ḡ
(

x(s+1),x(s)
)
≤ ḡ

(
x(s),x(s)

)
.

Finally, by (B),

g
(

x(s+1)
)
≤ ḡ

(
x(s+1),x(s)

)
.

Thus g
(
x(s+1)

)
≤ g

(
x(s)
)
.
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Some useful majorizers (1)

Note that all majorizers turn into minorizers when one
switches the words convex/concave and positive/negative
definite, and the inequality signs.

All results arise from Lange (2013, Ch. 8) and Lange (2016,
Ch. 4).

Suppose that g (x) is a concave function, for x ∈ X in a Euclidean
space. We can majorize g at y via the supporting hyperplane

ḡ (x,y) = g (y) + (∇g)(y)(x−y) .
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Some useful majorizers (2)

x
y

g(x)

g_bar(x,y)

Figure: An example of the supporting hyperplane majorizer.
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Some useful majorizers (3)

Suppose that g (x) is a convex function with respect to
x ∈X = Rp

+ (the positive cone in Rp, p ∈N). Also let c ∈Rp
+ be a

vector of constants. Via Jensen’s inequality, we can majorize
g
(
c>x

)
at y by

ḡ (x,y) =
m

∑
j=1

cjyj
c>y g

(
c>y
yi

xi

)
,

where c = (c1, . . . ,cp), x = (x1, . . . ,xp), and y = (y1, . . . ,yp).
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Some useful majorizers (4)

Let H be the Hessian operator (i.e. Hg = ∂ 2g/∂x∂x>). Let g (x)

be a function with bounded curvature, in the sense that there
exists a matrix C, such that C− (Hg)(x) is positive semidefinite
for all x ∈ X. We can majorize g at y by

ḡ (x,y) = g (x) + (∇g)(y)(x−y) +
1
2 (x−y)>C(x−y) .
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Some useful majorizers (5)

Let x ∈ X = Rp
+ and define

g (x) =
p

∏
j=1

x ci
i ,

where c ∈ Rp
+. Further define C = ∑

p
j=1 cj . Then, via the

arithmetic-geometric mean inequality, we can majorize g at y
by

ḡ (x;y) =

(
p

∏
j=1

y cj
j

)
p

∑
j=1

cj
C

(
xj
yj

)C
.
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Some useful majorizers (6)

Along with the majorizers that have been presented, we also
note that majorization satisfies the following property.

Transitivity (i.e. if, ḡ majorizes g at y , and ¯̄g majorizes ḡ at
y , then ¯̄g majorizes g at y).
Majorization is closed under summation (i.e. if ḡ1 majorizes
g1 at y and ḡ2 majorizes g2 at y , then ḡ1 + ḡ2 majorizes
g1 + g2 at y).
Majorization is closed under non-negative multiplication
(i.e. if ḡ1 > 0 majorizes g1 > 0 at y and ḡ2 > 0 majorizes
g2 > 0 at y , then ḡ1ḡ2 majorizes g1g2 at y).
Majorization is closed under composition with an
increasing function (i.e. if ḡ majorizes g at y and h is an
increasing function, then h ◦ ḡ majorizes h ◦g at y).
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Normal mixture models (1A)

Let g (x) = log
(
1>x

)
(a concave function), where

x ∈ X = Rp
+. Using the Jensen’s inequality majorizer, the

following minorizer was proposed by Zhou and Lange (2010):

g (x,y) =
m

∑
j=1

yj

∑
m
k=1 yk

log (xk)−
m

∑
j=1

yj

∑
m
k=1 yk

log
(

yj

∑
m
k=1 yk

)
.

Make the substitutions xj = πjφ
(

zi ; µj ,σ
2
j

)
and

yj = π
(s−1)
j φ

(
zi ; µ

(s−1)
j ,σ

(s−1)2
j

)
.

Rewrite g (x)≡ gi (θθθ) as

gi (θθθ) = log
[

m

∑
j=1

πjφ
(
zi ; µj ,σ

2
j
)]

.
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Normal mixture models (1B)

We can then write ḡ (x,y)≡ ḡi
(

θθθ ,θθθ (s−1)
)
as

ḡi
(

θθθ ,θθθ (s−1)
)

=
m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)[
log (πj) + logφ

(
zi ; µj ,σ

2
j
)]

−Ci
(

θθθ
(s−1)

)
,

where τj (zi ;θθθ) = πjφ
(

zi ; µj ,σ
2
j

)
/f (zi ;θθθ) and

Ci
(

θθθ
(s−1)

)
=

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)
log
[
τj
(

zi ;θθθ
(s−1)

)]
.

20 / 51



Normal mixture models (1C)

Notice that the log-likelihood Qn (θθθ) = ∑
n
i=1 log f (zi ;θθθ) can

be written as Qn = ∑
n
i=1 gi , and thus we can minorize Qn (θθθ)

by

Q
(

θθθ ;θθθ
(s−1)

)
≡

n

∑
i=1

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)
log (πj)

+
n

∑
i=1

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)
logφ

(
zi ; µj ,σ

2
j
)

−
n

∑
i=1

Ci
(

θθθ
(s−1)

)
.
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Normal mixture models (1D)

Expand out
φ

(
zi ; µj ,σ

2
j

)
=
(
2πσ2

i
)−1/2 exp[(zi −µj)

2 /
(
2σ2

j

)]
to get

Q
(

θθθ ;θθθ
(s−1)

)
≡

n

∑
i=1

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)
log (πj)

−1
2

n

∑
i=1

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

)
log
(
σ
2
j
)

−1
2

n

∑
i=1

m

∑
j=1

τj
(

zi ;θθθ
(s−1)

) (zi −µj)
2

σ2
j

+ C ,

where C is a constant that is not dependent on θθθ .
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Normal mixture models (1D)
Construct the Lagrangian

Λ(θθθ ,λ ) = Q
(

θθθ ;θθθ
(s−1)

)
+ λ

(
m

∑
j=1

πj −1
)
,

and compute ∇Λ(θθθ ,λ ) to obtain the FOC, for each j ,

∂ Λ(θθθ ,λ )

∂πj
= π

−1
j

n

∑
i=1

τj
(

zi ;θθθ
(s−1)

)
+ λ = 0,

∂ Λ(θθθ ,λ )

∂ µj
=

n

∑
i=1

τj
(

zi ;θθθ
(s−1)

) zi −µj
σ2

j
= 0,

∂ Λ(θθθ ,λ )

∂σ2
j

=
1
2

n

∑
i=1

τj
(

zi ;θθθ
(s−1)

)− 1
σ2

j
+

(zi −µj)
2(

σ2
j

)2
= 0,

and ∑
m
j=1πj −1 = 0.
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Normal mixture models (1E)
Solving the FOC yields the MM algorithm update at the sth
step, θθθ

(s), which contains, for each j :

π
(s)
j ≡ n−1

n

∑
i=1

τj
(

zi ;θθθ
(s−1)

)
,

µ
(s)
j ≡

∑
n
i=1 τj

(
zi ;θθθ

(s−1)
)

zi

∑
n
i=1 τj

(
zi ;θθθ

(s−1)
) ,

and

σ
(s)2
j ≡

∑
n
i=1 τj

(
zi ;θθθ

(s−1)
)(

zi −µ
(s)
j

)2
∑

n
i=1 τj

(
zi ;θθθ

(s−1)
) .

Note that this is exactly the expectation-maximization
algorithm for maximum likelihood estimation for normal
mixtures (this is a coincidence; see Meng, 2000).

24 / 51



The EM algorithm (1)
The MM algorithm (for maximization) is a generalization of
the EM algorithm, in the sense that every EM algorithm is an
MM algorithm.
Suppose that Z = (U,V ) is a random variable, and suppose
that we only observe U but not V , at u.
Write the PDF of U with respect to some parameter θθθ ∈Θ as
f (u;θθθ).
If we know both U and V , then we can write the PDF of Z
as f (z;θθθ) (the complete-data likelihood).
Starting from some initial parameter θθθ

(0), the EM algorithm
proceeds by computing, at the sth step,

θθθ
(s) ≡ argmax

θθθ∈Θ
Eθθθ

(s−1)

V |U=u [log f (Z ;θθθ)] .
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The EM algorithm (2)
Consider the sequence of arguments:

log (u;θθθ) = logEθθθ

V [f (U|V = v ;θθθ)]

= logEθθθ

V

 f
(

V |U = u;θθθ
(s−1)

)
f (U|V = v ;θθθ)

f
(

V |U = u;θθθ
(s−1)

)


= logEθθθ
(s−1)

V |U=u

 f (V ;θθθ) f (U|V = v ;θθθ)

f
(

V |U = u;θθθ
(s−1)

)


≥ Eθθθ
(s−1)

V |U=u

log f (V ;θθθ) f (U|V = v ;θθθ)

f
(

V |U = u;θθθ
(s−1)

)


= Eθθθ
(s−1)

V |U=u [log f (Z ;θθθ)]

−Eθθθ
(s−1)

V |U=u

[
log f

(
V |U = u;θθθ

(s−1)
)]
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The EM algorithm (3)

Set
g (θθθ)≡ log f (u;θθθ) ,

and

ḡ
(

θθθ ;θθθ
(s−1)

)
≡ Eθθθ

(s−1)

V |U=u [log f (Z ;θθθ)]

−Eθθθ
(s−1)

V |U=u

[
log f

(
V |U = u;θθθ

(s−1)
)]

.

Since the second term of ḡ
(

θθθ ;θθθ
(s−1)

)
does not depend on θθθ ,

we can write the EM step as the MM step

θθθ
(s) ≡ argmax

θθθ∈Θ
ḡ
(

θθθ ;θθθ
(s−1)

)
.
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A modern example (1)

Suppose that we observe data {zi}, where each zi = (ui ,vi ),
with ui ∈ U = Rp and vi ∈ {−1,+1}.

Suppose that we wish to construct a linear classifier that
minimizes, with respect to θθθ ∈ Rp+1, the average
classification loss

ln (θθθ) =
1
n

n

∑
i=1

r
vi 6= sign

(
ũ>i θθθ

)z
.

sign(a) =−1 if a ≤ 0, +1 if a > 0.
JAK is the Iverson bracket, which takes value 1 if A is true and
0 otherwise.
ũi = (1,ui ).
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A modern example (2)

The problem of obtaining

θ̂θθ n ≡ arg min
θθθ∈Rp+1

ln (θθθ)

is highly ill-conditioned and combinatorial.

We can instead replace the average classification loss, by the
average hinge loss

lhn (θθθ) =
1
n

n

∑
i=1

h (zi ;θθθ) ,

where
h (zi ;θθθ) =

[
1−vi ũ>i θθθ

]
+
,

and [a]+ = max{0,a}.
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A modern example (3)

loss

w0

1

1

hinge

classification

Figure: Example of loss functions, where w = ũ>i θθθ and vi = 1.

30 / 51



A modern example (4)

Suppose that we penalize the components of θθθ that
correspond to ui by

pen(θθθ) = λθθθ
>Ĩθθθ ,

where λ ≥ 0

Ĩ =

[
0 0
0 Ip

]
.

The problem:
θ̂θθ n ≡ arg min

θθθ∈Rp+1
g (θθθ) ,

where g (θθθ) = lhn (θθθ) +pen(θθθ) is the classical soft-margin
support vector machine (SVM) problem of Cortes and
Vapnik (1995).
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An MM for the SVM (1)

The following derivation is from Nguyen and McLachlan
(2017).

Using the supporting hyperplane inequality, we can majorize
g (a) =

√
a (x ∈ R+), at b, by

ḡ (a,b) =
√

b +
1

2
√

b
(a−b) .

If we substitute x2 in for a and y2 in for b, then we can
majorize g (x) =

√
x2 = |x |, at y 6= 0, by

ḡ (x ,y) = |y |+
(
x2−y2)
2 |y |

=
x2

2 |y | +
|y |
2 .
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An MM for the SVM (2)

Consider the identity:

max{a,b}=
|a−b|

2 +
a + b
2 ,

which implies that [a]+ = |a|/2+ a/2.

Using the previous result, we can majorize g (x) = [x ]+, at
y 6= 0, by

ḡ (x ,y) =
x2

4 |y | +
|y |
4 +

x
2

=
(x + |y |)2

4 |y | .
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An MM for the SVM (3)

Using the Jensen’s inequality majorizer, for small ε > 0, we
can majorize g (x) =

√
x2 + ε, at y , by

ḡ (x ,y) =
√

y2 + ε +

(
x2−y2)

2
√

y2 + ε
.

Approximate [x ]+ by g (x) =
√

x2 + ε/2+ x/2, for small
ε > 0. We can majorize g (x) by

ḡ (x ,y) =

[
x +

√
y2 + ε

]2
4
√

y2 + ε
.
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An MM for the SVM (4)

For small ε > 0, we can approximate g (θθθ) = lhn (θθθ) +pen(θθθ)

by

gε (θθθ) =
1
n

n

∑
i=1

g ε
i (θθθ) + λθθθ

>Ĩθθθ ,

where

g ε
i (θθθ) =

√(
1−vi ũ>i θθθ

)2
+ ε

2 +
1−vi ũ>i θθθ

2 .
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An MM for the SVM (5)

Using the previously derived majorizer, we can majorize g ε
i (θθθ)

at some θθθ
(s−1) by

ḡi
(

θθθ ,θθθ (s−1)
)

=

[
1−vi ũ>i θθθ + γε

i

(
θθθ

(s−1)
)]2

4γε
i

(
θθθ

(s−1)
) ,

where γε
i

(
θθθ

(s−1)
)

=

√(
1−vi ũ>i θθθ

(s−1)
)2

+ ε.

Thus, we can majorize gε (θθθ), at θθθ
(s−1) by

ḡε

(
θθθ ,θθθ (s−1)

)
=

1
n

n

∑
i=1

ḡi
(

θθθ ,θθθ (s−1)
)

+ λθθθ
>Ĩθθθ .
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An MM for the SVM (6)

For each s, write

γγγ
(s−1)
n =

(
1+ γ

ε
1

(
θθθ

(s−1)
)
, . . . ,1+ γ

ε
n

(
θθθ

(s−1)
))

and let W(s−1)
n be a diagonal matrix with ith element

1
4γε

i

(
θθθ

(s−1)
) .

Let Vn contain vi ũi in the ith row.

We can write ḡε

(
θθθ ,θθθ (s−1)

)
as

1
n

(
γγγ

(s−1)
n −Vnθθθ

)>
W(s−1)

n
(

γγγ
(s−1)
n −Vnθθθ

)
+ λθθθ

>Ĩθθθ .
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An MM for the SVM (7)
The MM update

θθθ
(s) ≡ arg min

θθθ∈Rp+1
ḡε

(
θθθ ,θθθ (s−1)

)
is a weighted linear ridge regression problem.
We can obtain the form of the update by solving the FOC
(∇ḡε )(θθθ) = 0, where

∇ḡε = −2
nV
>
n W

(s−1)
n

(
γγγ

(s−1)
n −Vnθθθ

)
+2λ Ĩθθθ .

We thus obtain the iteratively reweighted least-squares
updates

θθθ
(s) =

(
V>n W

(s−1)
n Vn + nλ Ĩ

)>
V>n W

(s−1)
n γγγ

(s−1)
n .
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A convergence result (1)

Let g (x) be the objective of interest, where x ∈ X⊂ Rp and
let d ∈ X. We say that the directional derivative of g with
respect to d is

g ′d (x)≡ liminf
t↓0

g (x + td)−g (x)

t .

We say that a x∗ is a stationary point of g , if g ′d (x∗)≥ 0,
for all d such that x∗+ d ∈ X.

In the case where g is a differentiable function, the definition
is equivalent to (∇g)(x∗) = 0.
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A convergence result (2)

(A1) Let ḡ (x,y) majorize the objective g (x) (x ∈ X), at y , by
satisfying Assumptions (A) and (B).

Starting from some initialization x(0), we denote the limit
point of the MM algorithm by

x(∞) ≡ lim
s→∞

x(s) < ∞,

where x(s) ≡ argminθθθ∈X ḡ
(

θθθ ,θθθ (s−1)
)
.

Theorem 1 of Razaviyayn et al. (2013) states the following:

Under Assumption (A1), every limit point x(∞) is a stationary point
of the problem

min
x∈X

g (x) .
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Convergence of the SVM MM (1)
Assumption (A1) is automatically fulfilled, by construction of
the MM algorithm.
We must therefore show that the updates

θθθ
(s) =

(
V>n W

(s−1)
n Vn + nλ Ĩ

)>
V>n W

(s−1)
n γγγ

(s−1)
n

globally minimizes the majorizer ḡε

(
θθθ ;θθθ

(s−1)
)
.

In
1
n

(
γγγ

(s−1)
n −Vnθθθ

)>
W(s−1)

n
(

γγγ
(s−1)
n −Vnθθθ

)
+ λθθθ

>Ĩθθθ ,

both W(s−1)
n and Ĩ are at least positive semidefinite, thus the

stationary point of ḡε is also a global minimum (since ḡε is
convex).
Thus, the limit point θθθ

(∞) (starting from some θθθ
(0))

converges to a stationary point of gε .
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Convergence of the SVM MM (2)

Recall that
gε (θθθ) =

1
n

n

∑
i=1

g ε
i (θθθ) + λθθθ

>Ĩθθθ ,

where

g ε
i (θθθ) =

√(
1−vi ũ>i θθθ

)2
+ ε

2 +
1−vi ũ>i θθθ

2 .

For the function h (x) =
√

x2 + ε (ε > 0) we can obtain the
second derivative

h′′ (x) = ε/
(
x2 + ε

)3/2
> 0.
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Convergence of the SVM MM (3)

Since g ε
i (θθθ) is a convex composition of an affine function of

θθθ , it is also convex (cf. Boyd and Vandenberghe, 2004, Sec.
3.2.2).

Thus, every stationary point of gε is a global minimizer.

We have the improved result: starting from any θθθ
(0), the limit

point θθθ
(∞) converges to a global minimizer of gε .
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Some recent developments

Stochastic approximation type algorithms have been proposed
in Mairal (2013) and Razaviyayn et al. (2016).

A stream-data suitable MM algorithm for SVM was proposed
in Nguyen et al. (2018).

Convex analysis and finite-iteration analysis of MM algorithms
have been explored in Mairal (2015).

Block-wise and cyclical MM algorithms have been explored
and analyzed in Razaviyayn et al. (2013) and Hong et al.
(2016).
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Further reading

Numerous minorizers and majorizers for a variety of problems
are presented in Heiser (1995).

A recent short review and tutorial appears in Nguyen (2017).

MM algorithms, as applied to signal processing problems are
reviewed in Sun et al. (2017).

Differences between EM and MM algorithms in some contexts
are explored Wu and Lange (2010).

A comprehensive treatment of MM algorithms is presented in
the manuscript of Lange (2016).
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Thank you for your attention!

Email: h.nguyen5@latrobe.edu.au

Twitter: @tresbienhien

Website: https://hiendn.github.io
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