Theory of statistical inference: a lazy approach to obtaining asymptotic results in parametric models

Hien D. Nguyen^{1,2}

¹DECRA Research Fellow, Australian Research Council. ²Lecturer, Department of Mathematics and Statistics, La Trobe University, Melbourne Australia. (Contact–Email: h.nguyen5@latrobe.edu.au, Twitter: @tresbienhien, Website: hiendn.github.io)

S4D, Caen, 2018 June 21

Framework

- Suppose that we observe $\{Z_i\}$ from some data generating process (DGP).
 - $i \in \{1, ..., n\}.$
- Define a function $Q_n(\boldsymbol{\theta})$ that depends on $\{\boldsymbol{Z}_i\}$.
 - $m{\theta} \in \Theta$, where Θ is a subset of a Euclidean space.
 - We call Q_n the objective function and θ the parameter vector.
 - We say that Θ is the **parameter space**.

Extremum estimation

■ Following the nomenclature of Amemiya (1985), we say that the vector

$$\boldsymbol{\theta}_0 \equiv \arg\max_{\boldsymbol{\theta} \in \Theta} \ Q(\boldsymbol{\theta})$$

is the **extremum parameter** of Q, where $n^{-1}Q_n \rightarrow Q$ in some sense (to be defined).

We call

$$\hat{\boldsymbol{\theta}}_n \equiv \arg\max_{\boldsymbol{\theta} \in \Theta} \ Q_n(\boldsymbol{\theta})$$

the **extremum estimator** of θ_0 .

A rose by any other name...

- We call the process of obtaining the extremum estimator: extremum estimation.
- Extremum estimation has appeared in the literature under numerous names:
 - Empirical risk minimization (Vapnik, 1998, 2000).
 - M-estimation (Huber, 1964; Serfling, 1980).
 - Minimum contrast estimation (Pfanzagl, 1969; Bickel and Docksum, 2000).

Some specific cases

- Important cases include:
 - Generalized method of moments.
 - Loss function minimization (e.g. fitting support vector machines, neural networks, etc.).
 - Maximum likelihood estimation (including empirical-, partial-, penalized-, pseudo-, quasi-, restricted-, etc).
 - Maximum a posteriori estimation.
 - Minimum distance estimation (e.g. least-squares, least-absolute deviation, etc).

Statistical inference

- Since $\boldsymbol{\theta}_0$ is defined as the maximum of Q, it must contain some information regarding the DGP of $\{\boldsymbol{Z}_i\}$.
- 1. We hope that given Q_n , $\hat{\boldsymbol{\theta}}_n$ will provide us with the same information regarding Q, provided that n is large enough.
- 2. We also hope that $\hat{\boldsymbol{\theta}}_n$ also has some DGP that is dependent on $\boldsymbol{\theta}_0$, which allows us to assess a priori hypotheses regarding $\boldsymbol{\theta}$.

Ordinary least squares (1A)

Suppose that we observe independent and identically distributed (IID) data pairs $Z_i = (X_i, Y_i)$, where

$$Y_i = \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_* + E_i,$$

where $\mathbb{E}(E_i) = 0$, and that the DGP of Z_i is in some sense, well-behaved.

- $\boldsymbol{\theta}_* \in \Theta \subset \mathbb{R}^p$ and $\boldsymbol{X}_i \in \mathbb{X} \subset \mathbb{R}^p$, $p \in \mathbb{N}$, and $\{E_i\}$ is independent of $\{\boldsymbol{X}_i\}$.
- Define the (negative) sum-of-squares as

$$Q_n(\boldsymbol{\theta}) = -\frac{1}{2} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2.$$

The least-squares estimator is defined as

$$\hat{\boldsymbol{\theta}}_n \equiv \arg\max_{\boldsymbol{\theta} \in \Theta} \ -\frac{1}{2} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2.$$

Ordinary least squares (1B)

• We can obtain $\hat{\boldsymbol{\theta}}_n$ by solving the first-order condition (FOC)

$$\nabla Q_n = \sum_{i=1}^n \mathbf{X}_i \left(Y_i - \mathbf{X}_i^{\top} \boldsymbol{\theta} \right) = \mathbf{0}$$

$$\implies \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^{\top} \boldsymbol{\theta} = \sum_{i=1}^n \mathbf{X}_i Y_i$$

$$\implies \hat{\boldsymbol{\theta}}_n = \left(\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^{\top} \right)^{-1} \sum_{i=1}^n \mathbf{X}_i Y_i.$$

■ More familiarly, if we put \mathbf{X}_i^{\top} into the ith row of $\mathbf{X}_n \in \mathbb{R}^{n \times p}$ and put Y_i into the ith position of $\mathbf{y}_n \in \mathbb{R}^n$, then we can write

$$\hat{\boldsymbol{\theta}}_n = \left(\mathbf{X}_n^{\top} \mathbf{X}_n\right)^{-1} \mathbf{X}_n^{\top} \mathbf{y}_n.$$

Ordinary least squares (1C)

- Since $\hat{\boldsymbol{\theta}}_n$ is an estimate of $\boldsymbol{\theta}_0$, we must determine if there is a sensible relationship between Q_n and $\boldsymbol{\theta}_0$.
- The following is a heuristic argument. Note that → denotes convergence in probability.
- 1. Notice that $n^{-1}Q_n = n^{-1}\sum_{i=1}^n g(\mathbf{Z}_i)$, for some

$$g(\mathbf{Z}_i) = -\frac{1}{2} \left(Y_i - \mathbf{X}_i^{\top} \boldsymbol{\theta} \right)^2.$$

2. Since Z_i is well-behaved, then a weak law of large numbers implies that

$$n^{-1}Q_n \stackrel{\mathsf{p}}{\longrightarrow} \mathbb{E}[g(\mathbf{Z}_i)] = -\frac{1}{2}\mathbb{E}\left[\left(Y_i - \mathbf{X}_i^{\top} \boldsymbol{\theta}\right)^2\right]$$

 $\equiv Q$

Ordinary least squares (1D)

Suppose that we can exchange integration and differentiation, then the FOC implies that

$$\nabla Q = \mathbb{E}\left[\mathbf{X}_{i}\left(\mathbf{Y}_{i} - \mathbf{X}_{i}^{\top}\boldsymbol{\theta}\right)\right]$$

$$= \mathbb{E}\left[\mathbf{X}_{i}\left(\mathbf{X}_{i}^{\top}\boldsymbol{\theta}_{*} + E_{i} - \mathbf{X}_{i}^{\top}\boldsymbol{\theta}\right)\right]$$

$$= \mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*} + \mathbb{E}(\mathbf{X}_{i}E_{i}) - \mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\boldsymbol{\theta}$$

4. Under the assumption that $\mathbb{E}(\mathbf{X}_i E_i) = \mathbf{0}$ (e.g. independence between $\{\mathbf{X}_i\}$ and $\{E_i\}$), we have

$$\begin{array}{rcl} \mathbf{0} & = & \mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\mathbf{\boldsymbol{\theta}}_{*} - \mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\mathbf{\boldsymbol{\theta}} \\ \Longrightarrow \mathbf{\boldsymbol{\theta}}_{0} & = & \arg\max_{\mathbf{\boldsymbol{\theta}}\in\Theta} \ Q = \mathbf{\boldsymbol{\theta}}_{*} \end{array}$$

■ Thus, in this case, we have found that θ_0 is the generative parameter θ_* !

Consistency

- We must now make precise the notion regarding how $\hat{\boldsymbol{\theta}}_n$ and $\boldsymbol{\theta}_0$ are related.
- Earlier, we defined $\stackrel{p}{\longrightarrow}$ to denote convergence in probability. We say that a random variable U_n converges in probability to another random variable U, if for every $\varepsilon > 0$, we have

$$\lim_{n\to\infty}\mathbb{P}(\|\boldsymbol{U}_n-\boldsymbol{U}\|>\varepsilon)=0,$$

where $\|\cdot\|$ is some appropriate norm (usually Euclidean, in our case).

• We say that $\hat{\boldsymbol{\theta}}_n$ is a **consistent** estimator of $\boldsymbol{\theta}_0$, if $\hat{\boldsymbol{\theta}}_n \stackrel{p}{\longrightarrow} \boldsymbol{\theta}_0$.

Proving consistency (1)

We present the consistency result of Amemiya (1985, Thm. 4.1.1). See also van der Vaart (1998, Thm. 5.7).

Make the following assumptions:

- (A) The parameter space Θ is a compact subset of a Euclidean space \mathbb{R}^p $(p \in \mathbb{N})$.
- (B) $Q_n(\boldsymbol{\theta})$ is a continuous function in $\boldsymbol{\theta}$ for all $\{\boldsymbol{Z}_i\}$, and measurable in $\{\boldsymbol{Z}_i\}$ for all $\boldsymbol{\theta}$.
- (C) $n^{-1}Q_n(\boldsymbol{\theta})$ converges to a non-stochastic function $Q(\boldsymbol{\theta})$ in probability uniformly in $\boldsymbol{\theta}$ over Θ .
- (D) $Q(\boldsymbol{\theta})$ obtains a unique global maximum at $\boldsymbol{\theta}_0$.

Proving consistency (2)

Under Assumptions (A)-(D), then the EE, defined as

$$\hat{\boldsymbol{\theta}}_n \equiv \arg\max_{\boldsymbol{\theta} \in \Theta} Q_n(\boldsymbol{\theta}),$$

is consistent, in the sense that $\hat{\boldsymbol{\theta}}_n \stackrel{p}{\longrightarrow} \boldsymbol{\theta}_0$.

■ Here, we say that $n^{-1}Q_n(\theta)$ converges in probability uniformly to $Q(\theta)$, if for any $\varepsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\left(\sup_{\boldsymbol{\theta}\in\Theta}\left|n^{-1}Q_n(\boldsymbol{\theta})-Q(\boldsymbol{\theta})\right|>\varepsilon\right)=0.$$

Uniform weak law of large numbers

- The most difficult part, in general, of applying Amemiya (1985, Thm. 4.1.1) is checking assumption (C).
- The main traditional tool that we will apply is the **weak** uniform law of large numbers of Jennrich (1969) (see also Amemiya, 1985, Thm. 4.2.1):

Let $Q_n(\boldsymbol{\theta}) = \sum_{i=1}^n g(\boldsymbol{Z}_i; \boldsymbol{\theta})$ be a measurable function of the IID sequence $\{\boldsymbol{Z}_i\}$, where \boldsymbol{Z}_i is supported in a Euclidean space, for each $\boldsymbol{\theta} \in \Theta$, where Θ is compact and Euclidean. If $\mathbb{E}[g(\boldsymbol{Z}_i; \boldsymbol{\theta})]$ exists, and $\mathbb{E}[\sup_{\boldsymbol{\theta} \in \Theta} g(\boldsymbol{Z}_i; \boldsymbol{\theta})] < \infty$, then $n^{-1}Q_n(\boldsymbol{\theta})$ converges in probability uniformly to $Q(\boldsymbol{\theta}) = \mathbb{E}[g(\boldsymbol{Z}_i; \boldsymbol{\theta})]$.

Ordinary least squares (2A)

- Make the following assumptions:
- (a) $\{\boldsymbol{Z}_i\}$ is and IID sequence and that the DGP of $\boldsymbol{Z}_i = (\boldsymbol{X}_i, Y_i)$ is such that $\mathbb{E}\left(\boldsymbol{X}_i \boldsymbol{X}_i^{\top}\right)$ exists and is positive definite, $\mathbb{E}\left(E_i\right) = 0$, $\mathbb{E}\left(E_i^2\right) = \sigma^2 < \infty$, and $\mathbb{E}\left(\boldsymbol{X}_i E_i\right) = \boldsymbol{0}$, where

$$Y_i = \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_* + E_i.$$

(b) The parameter space is $\Theta = [-L, L]^p$, where L is sufficiently large.

Ordinary least squares (2B)

- By (b), Θ is a compact Euclidean space, thus (A) is validated.
- We can write $Q_n(\boldsymbol{\theta}) = \sum_{i=1}^n g(\boldsymbol{Z}_i; \boldsymbol{\theta})$, where

$$-2g = \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta}\right)^2 = Y_i^2 + Y_i \boldsymbol{X}_i^{\top} \boldsymbol{\theta} - \boldsymbol{\theta}^{\top} \boldsymbol{X}_i \boldsymbol{X}_i^{\top} \boldsymbol{\theta}$$

and

$$\mathbb{E}\left[\left(Y_{i}-\boldsymbol{X}_{i}^{\top}\boldsymbol{\theta}\right)^{2}\right] = \mathbb{E}\left(Y_{i}^{2}\right)-2\mathbb{E}\left(Y_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}$$
$$+\boldsymbol{\theta}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}.$$

Ordinary least squares (2C)

• Continuing from the previous slide, and applying (a), we have:

$$\mathbb{E}\left[\left(Y_{i}-\boldsymbol{X}_{i}^{\top}\boldsymbol{\theta}\right)^{2}\right] = \boldsymbol{\theta}_{*}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*} + 2\mathbb{E}\left(\boldsymbol{E}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*}$$

$$+\mathbb{E}\left(\boldsymbol{E}_{i}^{2}\right) - 2\boldsymbol{\theta}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*}$$

$$-2\mathbb{E}\left(\boldsymbol{E}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta} + \boldsymbol{\theta}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}$$

$$= \boldsymbol{\theta}_{*}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*} - 2\boldsymbol{\theta}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta}_{*}$$

$$+\boldsymbol{\theta}^{\top}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\boldsymbol{\theta} + \boldsymbol{\sigma}^{2}.$$

■ Since $\mathbb{E}(X_iX_i^\top)$ exists, Q_n is measurable, and g is quadratic in θ , thus it is continuous and we have the validation of (B).

Ordinary least squares (2D)

■ Write $Q_n = \sum_{i=1}^n g(\mathbf{Z}_i; \boldsymbol{\theta})$, where

$$g_i(\boldsymbol{Z}_i;\boldsymbol{\theta}) = -\frac{1}{2} \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2.$$

From the previous slide, we have the fact that

$$\mathbb{E}[g(\mathbf{Z}_i; \boldsymbol{\theta})] = -\frac{1}{2} \boldsymbol{\theta}_*^\top \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^\top) \boldsymbol{\theta}_* + \boldsymbol{\theta}^\top \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^\top) \boldsymbol{\theta}_* \\ -\frac{1}{2} \boldsymbol{\theta}^\top \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^\top) \boldsymbol{\theta} - \sigma^2.$$

■ By (b), Θ is compact, and we have established that g is continuous. Thus, via the Weierstrass extreme value theorem,

$$\mathbb{E}\left[\sup_{\boldsymbol{\theta}\in\Theta}g\left(\boldsymbol{Z}_{i};\boldsymbol{\theta}\right)\right]\leq M<\infty.$$

Ordinary least squares (2E)

- Via the theorem of Jennrich (1969), we have the conclusion that $n^{-1}Q_n$ converges in probability uniformly to $\mathbb{E}[g(\mathbf{Z}_i; \boldsymbol{\theta})]$.
- Finally, we observe that $\mathbb{E}[g(\mathbf{Z}_i; \boldsymbol{\theta})]$ is a concave quadratic in $\boldsymbol{\theta}$ since $\mathbb{E}(\mathbf{X}_i \mathbf{X}_i^{\top})$ is positive definite (it may be linear otherwise), so $\mathbb{E}[g(\mathbf{Z}_i; \boldsymbol{\theta})]$ has a unique global maximum and thus (D) is validated.
 - The global maximum is $\theta_0 = \theta_*$.
- We have validated (A)–(D), and thus can conclude that $\hat{\boldsymbol{\theta}}_n$ is a consistent estimator for $\boldsymbol{\theta}_0$.

Asymptotic normality

- We would now like to establish, in a more precise manner, how $\hat{\boldsymbol{\theta}}_n$ fluctuates around $\boldsymbol{\theta}_0$ as it converges.
- In most cases, $n^{1/2} \left(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0 \right) \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{N} \left(\mathbf{0}, \boldsymbol{\Sigma} \right)$.
 - lacksquare We write $\stackrel{d}{\longrightarrow}$ to denote **convergence in distribution**.
 - We write $N(\mu, \Sigma)$ to denote the multivariate normal distribution with mean vector μ and covariance matrix Σ .
- Convergence in distribution can be characterized in numerous ways (cf. the famous **Portmanteau Lemma**; see, e.g. van der Vaart, 1998, Lem. 2.2).
- By the **Levy continuity Theorem** states that U_n converges to the distribution of U if and only if the characteristic function of U_n converges point-wise to that of U (cf. van der Vaart, 1998, Thm. 2.13).

Proving asymptotic normality (1)

- We now present the asymptotic normality result of Amemiya (1985, Thm. 4.1.6).
- Make the following assumptions:
- (A1) The parameter θ_0 is in the interior (an open subset) of the Euclidean parameter space Θ .
- (B1) The objective $Q_n(\boldsymbol{\theta})$ is continuous and measurable with respect to $\{\boldsymbol{Z}_i\}$, for all $\boldsymbol{\theta} \in \Theta$, and the partial derivative $(\nabla Q_n)(\boldsymbol{\theta})$ exists and is continuous in an open neighborhood N_1 of $\boldsymbol{\theta}_0$.
- (C1) There exists an open neighborhood N_2 of $\boldsymbol{\theta}_0$, where $n^{-1}Q_n(\boldsymbol{\theta})$ converges in probability uniformly to a non-stochastic function $Q(\boldsymbol{\theta})$ in N_2 , and $Q(\boldsymbol{\theta})$ attains a strict local maximum at $\boldsymbol{\theta}_0$.

Proving asymptotic normality (2)

- Make the further assumptions:
- (A2) The Hessian matrix $(\mathbf{H}Q_n)(\boldsymbol{\theta}) \equiv \partial^2 Q_n/\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}$ exists and is continuous in an open and convex neighborhood of $\boldsymbol{\theta}_0$.
- (B2) For any sequence $\boldsymbol{\theta}_n$, such that $\boldsymbol{\theta}_n \stackrel{p}{\longrightarrow} \boldsymbol{\theta}_0$, $n^{-1}(\mathbf{H}Q_n)(\boldsymbol{\theta}_n)$ converges in probability to

$$\mathbf{A}(\boldsymbol{\theta}_0) \equiv \lim_{n \to \infty} \mathbb{E}\left[n^{-1}(\mathbf{H}Q_n)(\boldsymbol{\theta}_0)\right].$$

(C2)
$$n^{-1/2}(\nabla Q_n)(\boldsymbol{\theta}_0) \stackrel{d}{\longrightarrow} N(\boldsymbol{0}, \mathbf{B}(\boldsymbol{\theta}_0))$$
, where

$$\mathbf{B}(\boldsymbol{\theta}_0) \equiv \lim_{n \to \infty} \mathbb{E}\left[n^{-1}(\nabla Q_n)(\boldsymbol{\theta}_0)(\nabla Q_n)^{\top}(\boldsymbol{\theta}_0)\right].$$

Proving asymptotic normality (3)

■ Define $\bar{\Theta}_n$ to be the set

$$\bar{\Theta}_n = \{ \boldsymbol{\theta}_n : (\nabla Q_n)(\boldsymbol{\theta}_n) = \mathbf{0} \}.$$

Under Assumptions (A1)–(C1) and (A2)–(C2), if $\hat{\boldsymbol{\theta}}_n$ is a sequence of local maximizers taking values in Θ_n , such that $\hat{\boldsymbol{\theta}}_n \stackrel{p}{\longrightarrow} \boldsymbol{\theta}_0$, then

$$n^{1/2}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right)\stackrel{d}{\longrightarrow} N\left(\mathbf{0},\mathbf{A}^{-1}\left(\boldsymbol{\theta}_{0}\right)\mathbf{B}\left(\boldsymbol{\theta}_{0}\right)\mathbf{A}^{-1}\left(\boldsymbol{\theta}_{0}\right)\right).$$

Ordinary least squares (3A)

- Make the following assumptions.
- (a) $\{\boldsymbol{Z}_i\}$ is and IID sequence and that the DGP of $\boldsymbol{Z}_i = (\boldsymbol{X}_i, Y_i)$ is such that $\mathbb{E}\left(\boldsymbol{X}_i \boldsymbol{X}_i^{\top}\right)$ exists and is positive definite, $\mathbb{E}\left(E_i\right) = 0$, $\mathbb{E}\left(E_i^2\right) = \sigma^2 < \infty$, and $\mathbb{E}\left(\boldsymbol{X}_i E_i\right) = \boldsymbol{0}$, where

$$Y_i = \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_* + E_i.$$

(b*) The parameter space is $\Theta = [-L, L]^p$, where L is sufficiently large, and $\boldsymbol{\theta}_0$ is in the interior of Θ .

Under (a) and (b*), we have the fulfillment of Assumptions (A1)–(C1).

Ordinary least squares (3B)

Recall that

$$\nabla Q_n = \sum_{i=1}^n \mathbf{X}_i \left(Y_i - \mathbf{X}_i^{\top} \mathbf{\theta} \right)$$

$$= \sum_{i=1}^n \mathbf{X}_i Y_i - \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^{\top} \mathbf{\theta}$$

$$\Longrightarrow (\mathbf{H} Q_n)(\mathbf{\theta}) = -\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^{\top}.$$

■ Thus, we observe that $(\mathbf{H}Q_n)(\boldsymbol{\theta})$ is constant for any $\boldsymbol{\theta}$ and is thus continuous, which fulfills (A2).

Ordinary least squares (3C)

 \blacksquare At $\boldsymbol{\theta}_0$, we have

$$(\nabla g)(\nabla g)^{\top} = \boldsymbol{X}_i \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_0 \right) \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_0 \right)^{\top} \boldsymbol{X}_i^{\top}$$

■ Recalling that $\boldsymbol{\theta}_0 = \boldsymbol{\theta}_*$, the parentheses equate to

$$Y_i - \mathbf{X}_i^{\top} \mathbf{\theta}_0 = \mathbf{X}_i^{\top} \mathbf{\theta}_* - \mathbf{X}_i^{\top} \mathbf{\theta}_0 + E_i$$

= $\mathbf{X}_i^{\top} \mathbf{\theta}_0 - \mathbf{X}_i^{\top} \mathbf{\theta}_0 + E_i$
= E_i .

■ Therefore, we have $(\nabla g)(\nabla g)^{\top} = E_i^2 X_i X_i^{\top}$ and therefore, the expectation is

$$\mathbb{E}\left[\left(\nabla g\right)\left(\nabla g\right)^{\top}\right] = \mathbb{E}\left(E_{i}^{2}\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)$$
$$= \mathbb{E}\left(E_{i}^{2}\right)\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right) = \sigma^{2}\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right).$$

Ordinary least squares (3D)

■ By Assumption (a), $\{Z_i\}$ is IID, and by definition of $\boldsymbol{\theta}_0$, we have

$$\mathbb{E}\left(\frac{1}{n}\nabla Q_n\right) = \mathbb{E}\left[\nabla g\left(\boldsymbol{Z};\boldsymbol{\theta}_0\right)\right] = \boldsymbol{0}.$$

■ Again, since $\{Z_i\}$ is IID, we have

$$cov (n^{-1}\nabla Q_n) = \mathbb{E}\left[\left(n^{-1}\nabla Q_n\right)\left(n^{-1}\nabla Q_n\right)^{\top}\right] \\
= \mathbb{E}\left[\left(n^{-1}\sum_{i=1}^n \nabla g\right)\left(n^{-1}\sum_{i=1}^n \nabla g\right)^{\top}\right] \\
= \mathbb{E}\left[\left(\nabla g\right)\left(\nabla g\right)^{\top}\right],$$

which exists!

Ordinary least squares (3E)

We now need to establish the fact that

$$n^{-1/2}\nabla Q_n = n^{-1/2}\sum_{i=1}^n g(\mathbf{Z}_i;\boldsymbol{\theta}_0)$$

converges in distribution to $N\left(\mathbf{0}, \sigma^2 \mathbb{E}\left[\mathbf{X}_i \mathbf{X}_i^{\top}\right]\right)$.

The multivariate Lindeberg-Lévy central limit theorem (CLT; van der Vaart, 1998, Thm. 2.18) states that if $\{U_i\}$ is an IID sequence that has finite mean vector μ and covariance matrix Σ , then

$$n^{1/2}\left(n^{-1}\sum_{i=1}^n \boldsymbol{U}_i - \boldsymbol{\mu}\right) \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}\right).$$

■ Since $n^{-1/2}\sum_{i=1}^n g(\boldsymbol{Z}_i;\boldsymbol{\theta}_0) = n^{1/2} \left(n^{-1}\sum_{i=1}^n g(\boldsymbol{Z}_i;\boldsymbol{\theta}_0) - \boldsymbol{0} \right)$, we have the desired result, and (C2) is validated with $\mathbf{B}(\boldsymbol{\theta}_0) = \sigma^2 \mathbb{E}\left(\boldsymbol{X}_i \boldsymbol{X}_i^\top\right)$.

Ordinary least squares (3F)

Lastly,

$$n^{-1}(\mathbf{H}Q_n)(\boldsymbol{\theta}_n) = n^{-1}\left(-\sum_{i=1}^n \boldsymbol{X}_i \boldsymbol{X}_i^{\top}\right).$$

■ By independence, we have $\mathbb{E}\left[n^{-1}(\mathbf{H}Q_n)(\boldsymbol{\theta}_0)\right] = \mathbb{E}\left(\mathbf{X}_i\mathbf{X}_i^{\top}\right)$, and via the weak law of large numbers, we have

$$n^{-1}(\mathbf{H}Q_n)(\boldsymbol{\theta}_n) \stackrel{\mathsf{p}}{\longrightarrow} \mathbf{A}(\boldsymbol{\theta}_0),$$

where

$$\mathbf{A}(\boldsymbol{\theta}_0) = -\mathbb{E}\left(\mathbf{X}_i \mathbf{X}_i^{\top}\right).$$

■ Thus, (B2) is validated.

Ordinary least squares (3G)

■ Finally, compute the matrix:

$$\mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1} = \left[\mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\right]^{-1}\left[\sigma^{2}\mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\right]\left[\mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\right]^{-1}$$
$$= \sigma^{2}\left[\mathbb{E}\left(\mathbf{X}_{i}\mathbf{X}_{i}^{\top}\right)\right]^{-1}.$$

Under Assumptions (a) and (b^*), the ordinary least squares estimator is asymptotically normal, in the sense that

$$n^{1/2}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right)\stackrel{d}{\longrightarrow} N\left(\boldsymbol{0},\sigma^{2}\left[\mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right)\right]^{-1}\right).$$

A bonus prize

■ Under Assumptions (A1)–(C1) Amemiya (1985, Thm. 4.1.2) states the **Wald-consistency** result (cf. Wald, 1949). See also van der Vaart (1998, Thm. 5.14).

If (A1)–(C1) hold, and $\{\hat{\boldsymbol{\theta}}_n\}$ is a sequence of local maximizers that take values in $\bar{\Theta}_n = \{\boldsymbol{\theta}_n : (\nabla Q_n)(\boldsymbol{\theta}_n) = \mathbf{0}\}$, then for any $\varepsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\left(\inf_{\boldsymbol{\theta}_n\in\bar{\boldsymbol{\Theta}}_n}\|\boldsymbol{\theta}_n-\boldsymbol{\theta}_0\|>\varepsilon\right)=0.$$

• We read this as "there exists a consistent sequence of locally maximal roots $\hat{\boldsymbol{\theta}}_n$, taking values in $\bar{\Theta}_n$ ".

Mixture of normal distributions (1)

• We say that the IID random sequence $\{Z_i\}$ arises from an m-component mixture of normal distributions, if it has a DGP characterized by the PDF

$$f(z_i; \boldsymbol{\mu}, \boldsymbol{\pi}, \boldsymbol{\sigma}) = \sum_{j=1}^m \pi_j \phi(z_i; \mu_i, \sigma_i^2),$$

where $\boldsymbol{\mu} \in \left[-L,L\right]^m$, $\boldsymbol{\sigma} \in \left[S^{-1},S\right]^m$, and

$$oldsymbol{\pi} \in \mathbb{S}_{m-1} = \left\{ (\pi_1, \ldots, \pi_m) : \pi_j \geq 0, \sum_{j=1}^m \pi_j = 1 \right\},$$

for large L and S > 1.

■ We write $\theta \in \Theta$ as the concatenation of μ , π , and σ .

Mixture of normal distributions (2)

■ Upon observing $\{Z_i\}$, we would wish to estimate the parameter vector $\boldsymbol{\theta}$ via maximization of the log-likelihood function

$$Q_n(\boldsymbol{\theta}) = \sum_{i=1}^n \log \left[\sum_{j=1}^m \pi_j \phi\left(z_i; \mu_i, \sigma_i^2\right) \right].$$

- Unfortunately, it is well-known that Q_n has multiple global maxima, due to lack of identifiability (cf. Titterington et al., 1985, Sec. 3.1)!
- For example, consider that

$$\pi_1\phi\left(z_i;\mu_1,\sigma_1^2\right) + \pi_2\phi\left(z_i;\mu_2,\sigma_2^2\right)$$

is the same as

$$\pi_2\phi(z_i;\mu_2,\sigma_2^2) + \pi_1\phi(z_i;\mu_1,\sigma_1^2)$$
.

Mixture of normal distributions (3)

- Since Q_n does not have a unique global maximum, we can't apply Amemiya (1985, Thm. 4.1.1).
- We can use the Wald consistency theorem by checking:
- (A1) The parameter θ_0 is in the interior (an open subset) of the Euclidean parameter space Θ .
- (B1) The objective $Q_n(\boldsymbol{\theta})$ is continuous and measurable with respect to $\{\boldsymbol{Z}_i\}$, for all $\boldsymbol{\theta} \in \Theta$, and the partial derivative $(\nabla Q_n)(\boldsymbol{\theta})$ exists and is continuous in an open neighborhood N_1 of $\boldsymbol{\theta}_0$.
- (C1) There exists an open neighborhood N_2 of $\boldsymbol{\theta}_0$, where $n^{-1}Q_n(\boldsymbol{\theta})$ converges in probability uniformly to a non-stochastic function $Q(\boldsymbol{\theta})$ in N_2 , and $Q(\boldsymbol{\theta})$ attains a strict local maximum at $\boldsymbol{\theta}_0$.

Mixture of normal distributions (4)

- Clearly, $\Theta = [-L, L]^m \times [S^{-1}, S]^m \times \mathbb{S}_{m-1}$ is Euclidean. We thus must simply make the assumption that (a1) θ_0 is in the interior of Θ . This validates (A1).
- Since the normal PDF is continuous, Q_n is continuous (since it is a convex combination of normal PDFs).
- We now need to validate the measurability of Q_n by showing that

$$\mathbb{E}\left[\log\sum_{i=1}^{m}\pi_{j}\phi\left(Z_{i};\mu_{j},\sigma_{j}^{2}\right)\right]<\infty.$$

Mixture of normal distributions (5)

■ Luckily, by Atienza et al. (2007), we have

$$\left|\log \sum_{j=1}^{m} \pi_{j} \phi\left(z_{i}; \mu_{j}, \sigma_{j}^{2}\right)\right| \leq \sum_{j=1}^{m} \left|\log \phi\left(z_{i}; \mu_{j}, \sigma_{j}^{2}\right)\right|.$$

We can write

$$\log \phi \left(z_i; \mu_i, \sigma_i^2\right) = -\frac{1}{2} \log (2\pi) - \frac{1}{2} \log \sigma_i^2$$
$$-\frac{1}{2\sigma_i^2} (z_i - \mu_i)^2$$

which is quadratic in z_i !

■ So $\mathbb{E}\log\phi\left(z_i;\mu_i,\sigma_i^2\right)$ exists, since normal random variables have second moments. Thus, we have the measurability of Q_n .

Mixture of normal distributions (6)

- Since the PDF f is smooth in all parameter components θ , we also have the existence of a continuous ∇Q_n , and thus (B1).
- Now recall that we have already proved that

$$\mathbb{E}\left[\log\sum_{j=1}^{m}\pi_{j}\phi\left(Z_{i};\mu_{j},\sigma_{j}^{2}\right)\right]<\infty.$$

■ Since $\{Z_i\}$ is IID and Θ is compact, we can directly apply the weak uniform law of large numbers to obtain the convergence of $n^{-1}Q_n$ to $\mathbb{E}\left[\log\sum_{j=1}^m\pi_j\phi\left(Z_i;\mu_j,\sigma_j^2\right)\right]$, uniformly in probability. We therefore have (C1) if we also assume that $\hat{\boldsymbol{\theta}}_n$ is a sequence from $\bar{\Theta}_n$.

Mixture of normal distributions (7)

Assume that $\boldsymbol{\theta}_0$ is a locally maximal root of $\mathbb{E}\left[\log\sum_{j=1}^{m}\pi_j\phi\left(Z_i;\mu_j,\sigma_j^2\right)\right]$, and that $\hat{\boldsymbol{\theta}}_n$ is a sequence of locally maximal roots from the set

$$\bar{\Theta}_n = \{ \boldsymbol{\theta}_n : (\nabla Q_n)(\boldsymbol{\theta}_n) = \mathbf{0} \}.$$

If $\{Z_i\}$ is an IID sequence from a model with density $f(z_i; \boldsymbol{\mu}, \boldsymbol{\pi}, \boldsymbol{\sigma})$, then for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(\inf_{\boldsymbol{\theta}_n\in\bar{\boldsymbol{\Theta}}_n}\|\boldsymbol{\theta}_n-\boldsymbol{\theta}_0\|>\varepsilon\right)=0.$$

An interpretation of the result is that: if you enumerated all of the local maxima of Q_n at each n, then one of the sequences of local maxima will converge to the parameter vector $\boldsymbol{\theta}_0$, in probability.

A modern problem

Consider the LASSO problem of Tibshirani (1996) (see also Hastie et al., 2015), where we maximize the negative regularized sum-of-squares:

$$Q_n(oldsymbol{ heta}) = -rac{1}{2} \sum_{i=1}^n \left(Y_i - oldsymbol{X}_i^ op oldsymbol{ heta}
ight)^2 - n \lambda \sum_{j=1}^p | heta_j| \,,$$

where $\boldsymbol{\theta} \in \Theta = [-L, L]^p$ for large L, $\lambda > 0$, and $\{\boldsymbol{Z}_i\}$ is an IID sequence with $\boldsymbol{Z}_i = (\boldsymbol{X}_i, Y_i)$.

Here

$$Y_i = \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_{S} + E_i$$

where $\mathbb{E}(E_i) = 0$, $\mathbb{E}(E_i^2) = \sigma^2 < \infty$, and $\mathbb{E}(\mathbf{X}_i \mathbf{X}_i^{\top})$ exists and is positive definite.

■ We say that θ is q-sparse $(q \in \mathbb{N}, q < p)$ in the sense that

$$\boldsymbol{\theta}_{S} = (\theta_{1}, \theta_{2}, \dots, \theta_{a}, 0, \dots, 0).$$

A consistency result? (1)

- We can check the following assumptions to prove consistency via the result of Amemiya (1985, Thm. 4.1.1):
- (A) The parameter space Θ is a compact subset of a Euclidean space \mathbb{R}^p $(p \in \mathbb{N})$.
- (B) $Q_n(\boldsymbol{\theta})$ is a continuous function in $\boldsymbol{\theta}$ for all $\{\boldsymbol{Z}_i\}$, and measurable in $\{\boldsymbol{Z}_i\}$ for all $\boldsymbol{\theta}$.
- (C) $n^{-1}Q_n(\boldsymbol{\theta})$ converges to a non-stochastic function $Q(\boldsymbol{\theta})$ in probability uniformly in $\boldsymbol{\theta}$ over Θ .
- (D) $Q(\boldsymbol{\theta})$ obtains a unique global maximum at $\boldsymbol{\theta}_0$.

A consistency result? (2)

- Clearly, (A) is validated since $\Theta = [-L, L]^p$.
- Both the quadratic and absolute value functions are continuous and thus Q_n is continuous.
- Write

$$g(\mathbf{Z}_i; \boldsymbol{\theta}) = -\frac{1}{2} \left(Y_i - \mathbf{X}_i^{\top} \boldsymbol{\theta} \right)^2 - \lambda \sum_{j=1}^{p} |\theta_j|.$$

 By the same argument as for the ordinary least squares, the first part is measurable. The second part is a constant, and is therefore also measurable. (B) is therefore validated.

A consistency result? (3)

■ Again, we know that $\mathbb{E}\left[\left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta}\right)^2\right]$ exists, and since $\lambda \sum_{j=1}^{p} |\theta_j|$ is constant for each n, the expectation also exists. We can apply the weak uniform law of large numbers to prove (C): that Q_n converges uniformly in probability to

$$Q = \mathbb{E}\left[g\left(oldsymbol{Z}_i;oldsymbol{ heta}
ight)
ight] = -rac{1}{2}\mathbb{E}\left(Y_i - oldsymbol{X}_i^ opoldsymbol{ heta}
ight)^2 - \lambda \sum_{j=1}^p \left| heta_j
ight|.$$

■ Finally, by note that the square and absolute value functions are both strictly convex (under the positive definiteness of $\mathbb{E}\left[\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\top}\right]$), and thus Q has a strict global maximum $\boldsymbol{\theta}_{0} \in \Theta$.

A consistency result? (4)

We have therefore proved that under the assumptions of the model, the sequence of global maximal values $\hat{\boldsymbol{\theta}}_n$ of

$$Q_n = -rac{1}{2}\sum_{i=1}^n \left(Y_i - oldsymbol{X}_i^ op oldsymbol{ heta}
ight)^2 - n\lambda \sum_{j=1}^p | heta_j|,$$

converge in probability to some $\theta_0 \in \Theta$ that globally maximizes Q.

- But does $\boldsymbol{\theta}_0 = \boldsymbol{\theta}_S$?
 - Unless λ is sufficiently small, the answer is no, since the regularization λ enforces an l_1 ball constraint.

A consistency result? (5)

■ Consider the l_1 ball, for $\kappa > 0$,

$$\sum_{i=1}^p |\theta_i| \leq \kappa.$$

■ From Osborne et al. (2000), we have the result that

$$\lambda(\kappa) \equiv \lambda = C_1 - C_2 \kappa$$
,

for real constant C_1 and positive constant C_2 .

• So if $\lambda(\kappa)$ is such that

$$\Theta_{\lambda(\kappa)} \equiv \left\{ oldsymbol{ heta} : \sum_{j=1}^{p} | heta_{i}| \leq \kappa
ight\} \subsetneq \Theta,$$

and $\boldsymbol{\theta}_{S} \in \Theta \backslash \Theta_{\kappa}$, then $\boldsymbol{\theta}_{0} \neq \boldsymbol{\theta}_{S}$.

A consistency result? (5)

Figure: Schematic of the parameter spaces Θ_{κ} and Θ .

The method of sieves

- The **method of sieves** is a general estimation philosophy that was first introduced in Grenander (1981, Ch. 8).
- The modern interpretation of the method of sieves is as follows (cf. Chen, 2007):
 - Let $\theta_0 \in \Theta$ be the parameter of interest, and let Θ be a compact Euclidean space.
 - At each $n \in \mathbb{N}$, define the compact set Θ_n as the **sieve space**, where

$$\Theta_n \subset \Theta_{n+1} \subset \cdots \subset \Theta$$
.

■ Define the **sieve estimator**, at *n*, as

$$\tilde{\boldsymbol{\theta}}_n \equiv \arg\max_{\boldsymbol{\theta} \in \Theta_n} Q_n(\boldsymbol{\theta}),$$

where Q_n is constructed from the data $\{Z_i\}$.

Consistency of the sieve estimator (1)

- Let Π_n be a (loosely defined) projection operator into the set Θ_n and make the following assumptions:
- (A3) The parameter space Θ is compact and $Q_n(\boldsymbol{\theta})$ is continuous with respect to $\boldsymbol{\theta} \in \Theta$. There exists a Q, such that $\boldsymbol{\theta}_0$ is the unique global maximizer of Q, and $Q(\boldsymbol{\theta}_0) > -\infty$.
- (B3) For all $k \ge 1$, $\Theta_k \subset \Theta_{k+1} \subset \Theta$ is compact, and for any $\boldsymbol{\theta} \in \Theta$, there exists a $\Pi_k \boldsymbol{\theta} \in \Theta_k$, such that $\lim_{k \to \infty} \|\boldsymbol{\theta} \Pi_k \boldsymbol{\theta}\| = 0$.
- (C3) Q_n is measurable with respect to $\{Z_i\}$ for all $\boldsymbol{\theta} \in \Theta_k$, and Q_n is continuous for every $\{Z_i\}$.
- (D3) For each $k \ge 1$, Q_n converges in probability uniformly to Q, in the sieve space Θ_k .

Consistency of the sieve estimator (2)

■ Theorem 3.1 of Chen (2007) states the provides the following result.

Under Assumptions (A3)–(D3), the sieve estimator is consistent in the sense that

$$\tilde{\boldsymbol{\theta}}_n \stackrel{\mathsf{p}}{\to} \boldsymbol{\theta}_0.$$

As a note, (A3)-(D3) are one set of many possible set of assumptions that results in the same theorem.

A simple oracle (1)

Make the following assumptions:

(a*) $\{Z_i\}$ is and IID sequence and that the DGP of $Z_i = (X_i, Y_i)$ is such that $\mathbb{E}(X_iX_i^\top)$ exists and is positive definite, $\mathbb{E}(E_i) = 0$, $\mathbb{E}(E_i^2) = \sigma^2 < \infty$, and $\mathbb{E}(X_iE_i) = \mathbf{0}$, where

$$Y_i = \boldsymbol{X}_i^{\top} \boldsymbol{\theta}_{S} + E_i.$$

(b**) The parameter space is $\Theta = [-L, L]^p$, where L is sufficiently large, and $\boldsymbol{\theta}_S$ is in Θ .

A simple oracle (2)

■ Let $\kappa(n) \equiv \kappa$, be a non-zero and strictly increasing function of n, and define the set

$$\Theta_n = \left\{ \boldsymbol{\theta} : \sum_{j=1}^p |\theta_i| \leq \kappa(n) \right\} \cap \Theta.$$

- Clearly, $\Theta_n \subset \Theta_{n+1} \subset \Theta$, for each n, and Θ_n is compact.
- Define $\Pi_n \boldsymbol{\theta} = \arg \min_{\boldsymbol{\theta}_n \in \Theta_n} \| \boldsymbol{\theta}_n \boldsymbol{\theta} \|$.
- For sufficiently large N, $\Theta_N = \Theta$, and thus $\Pi_N \boldsymbol{\theta} = \boldsymbol{\theta}$, and thus $\Pi_n \boldsymbol{\theta} \to \boldsymbol{\theta}$, for all $\boldsymbol{\theta} \in \Theta$.
- We have therefore fulfilled Assumption (B3).
- We also note that $\boldsymbol{\theta}_0 = \boldsymbol{\theta}_S$, due to Assumption (B3).

A simple oracle (3)

■ Define, $\lambda(\kappa(n))$ fulfill the relationship $\lambda(\kappa(n)) = C_1 - C_2\kappa(n)$, such the problem

$$\max_{\boldsymbol{\theta} \in \Theta} Q_n = -\frac{1}{2} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2 - n\lambda \left(\kappa(n) \right) \sum_{j=1}^p |\theta_j|$$

is equivalent to the problem

$$\max_{\boldsymbol{\theta} \in \Theta_n} -\frac{1}{2} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2.$$

• Under the assumptions on the model, The first problem is strictly concave and thus has a unique global maximizer $\hat{\boldsymbol{\theta}}_n$, which implies the satisfaction of Assumption (A3).

A simple oracle (4)

- We have already proved that Q_n is measurable and continuous, previously, and thus (C3) is fulfilled.
- For each constant k,

$$\mathbb{E}\left(Y_i - \boldsymbol{X}_i^{\top}\boldsymbol{\theta}\right)^2$$

is finite, since Θ_k is compact, and since $\mathbb{E}\left(E_i^2\right) < \infty$ and $\mathbb{E}\left(\boldsymbol{X}_i\boldsymbol{X}_i^{\top}\right)$ exists. Thus (D3) is fulfilled.

Under (a*) and (b**), if $\kappa(n)$ is a non-zero and strictly increasing function of n, and

$$\Theta_n = \left\{ \boldsymbol{\theta} : \sum_{j=1}^p |\theta_i| \leq \kappa(n) \right\} \cap \Theta,$$

then the sieve estimator $\tilde{\boldsymbol{\theta}}_n = \arg\max_{\boldsymbol{\theta} \in \Theta_n} -\frac{1}{2} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\theta} \right)^2$ is a consistent estimator of $\boldsymbol{\theta}_0 = \boldsymbol{\theta}_S$.

A simple oracle (5)

Figure: Schematic of the behaviour of the sieve estimator.

A different kind of oracle (1A)

- Make the same assumptions as the previous example:
- (a*) $\{Z_i\}$ is and IID sequence and that the DGP of $Z_i = (X_i, Y_i)$ is such that $\mathbb{E}(X_iX_i^\top)$ exists and is positive definite, $\mathbb{E}(E_i) = 0$, $\mathbb{E}(E_i^2) = \sigma^2 < \infty$, and $\mathbb{E}(X_iE_i) = \mathbf{0}$, where

$$Y_i = \mathbf{X}_i^{\top} \mathbf{\theta}_{S} + E_i.$$

(b**) The parameter space is $\Theta = [-L, L]^p$, where L is sufficiently large, and θ_S is in Θ .

A different kind of oracle (1B)

Suppose now that we want to estimate the q-sparse parameter $\boldsymbol{\theta}_S$ again, but by estimating a sequence of estimators $\hat{\boldsymbol{\theta}}_k \in \hat{\Theta}_k^S$, where

$$\hat{\Theta}_{k}^{S} = \left\{ \hat{\boldsymbol{\theta}} : \hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \Theta_{k}^{S}} \mathbb{E}[g(\boldsymbol{Z}_{i}; \boldsymbol{\theta})] \right\},$$

 $\Theta_k^{\sf S}=\{m{ heta}\in\Theta:m{ heta}\ ext{is }k ext{-sparse (has }k ext{ non-zero elements)}\}$, and $k\in\{1,\ldots,q,\ldots K\}.$

- Recall that $g(\mathbf{Z}_i; \boldsymbol{\theta}) = -(Y_i \mathbf{X}_i^{\top} \boldsymbol{\theta})^2 / 2$.
- Is there an estimation method for using the sequence $\hat{\boldsymbol{\theta}}_k$ (or the estimate sequence $\hat{\boldsymbol{\theta}}_{k,n}$) in order to selection the correct k, say \hat{k}_n , where \hat{k}_n goes to q in n, in some sense?

A model selection result (1)

- Define $\{\Theta_k^{\mathsf{M}}\}$ to be a collection of models $\Theta_k^{\mathsf{M}} \subset \mathbb{R}^{d_k}$, where $k = \{1, 2, \dots, K\}$, and $d_1 \leq d_2 \leq \dots \leq d_K \in \mathbb{N}$.
- Let $Q_n(\boldsymbol{\theta}) = \sum_{i=1}^n g(\boldsymbol{Z}_i; \boldsymbol{\theta})$ for the sequence of data $\{\boldsymbol{Z}_i\}$ be such that $\boldsymbol{\theta} \in \cup \Theta_k^M$.
- Define $\hat{\boldsymbol{\theta}}_k \in \hat{\Theta}_k^{\mathsf{M}}$, with

$$\hat{\Theta}_k = \left\{ \hat{\boldsymbol{\theta}}_k : \hat{\boldsymbol{\theta}}_k = \arg\max_{\boldsymbol{\theta} \in \Theta_k^{\mathsf{M}}} \mathbb{E}[g(\boldsymbol{Z}_i; \boldsymbol{\theta})] \right\}.$$

■ The following results arises from Theorem 8.1 of Baudry (2015).

A model selection result (2)

- Make the assumptions:
- (A4) Suppose that there exists some

$$k_0 = \min \left\{ \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,max}} \ \mathbb{E}\left[g\left(\boldsymbol{Z}_i; \hat{\boldsymbol{\theta}}_k\right)\right] \right\}.$$

(B4) For all k, $\hat{\boldsymbol{\theta}}_{k,n} \in \Theta_k^{\mathsf{M}}$ is such that

$$Q_n\left(\hat{\boldsymbol{\theta}}_{k,n}\right) \geq Q_n\left(\hat{\boldsymbol{\theta}}_k\right)$$

and

$$n^{-1}Q_n\left(\hat{\boldsymbol{\theta}}_{k,n}\right) \stackrel{\mathsf{p}}{\longrightarrow} \mathbb{E}\left[g\left(\boldsymbol{Z}_i;\hat{\boldsymbol{\theta}}_k\right)\right].$$

A model selection result (3)

(C4) We can define a penalty function pen(k, n), such that pen(k, n) > 0,

$$\lim_{n\to\infty}\operatorname{pen}(k,n)=\infty,$$

and $n[\text{pen}(k_2, n) - \text{pen}(k_1, n)] \stackrel{p}{\longrightarrow} \infty$, when $k_2 > k_1$.

(D4) For any
$$\hat{k} \in \operatorname*{arg\,max}_{k \in \{1, \dots, K\}} \mathbb{E}\left[g\left(\boldsymbol{Z}_{i}; \hat{\boldsymbol{\theta}}_{k}\right)\right]$$
,

$$Q_n\left(\hat{\boldsymbol{\theta}}_{k_0,n}\right) - Q_n\left(\hat{\boldsymbol{\theta}}_{\hat{k},n}\right) = O_p(1).$$

Under (A4)–(D4),
$$\lim_{n\to\infty} \mathbb{P}\left(\hat{k}_n \neq k_0\right) = 0$$
, where

$$\hat{k}_n = \min \left\{ \underset{k \in \{1,\dots,K\}}{\operatorname{arg\,min}} - n^{-1} Q_n \left(\hat{\boldsymbol{\theta}}_k \right) + pen(k,n) \right\}.$$

A model selection result (4)

- The most difficult assumption to prove in general is (D4).
- A set of conditions for for guaranteeing (D4) is provided in Corollary 8.2 of Baudry (2015).
- (c) Some conditions that suffice are:
 - *g* is twice continuously differentiable.
 - ullet Θ_k^{M} is compact for each k.
 - $\{Z_i\}$ is a sequence of bounded random variables.
 - The Hessian $(\mathbf{H} \ \mathbb{E} g) \Big(\hat{\boldsymbol{\theta}}_{k_0} \Big)$ is nonsingular.

A different kind of oracle (2A)

(A4) must be assumed, and we will restate it as the existence of

$$k_0 = \min \left\{ \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,max}} \ \mathbb{E} \left[-\left(Y_i - \boldsymbol{X}_i^{ op} \hat{\boldsymbol{\theta}}_k \right)^2 / 2
ight]
ight\}.$$

- We have proved (B4) in all of the previous examples (since Q_n is still concave, and the law of large numbers still applies).
- We must propose a penalty that has the properties that we desire. We can check that the penalty

$$pen(n,k) = k \frac{\log n}{n}$$

satisfies the criteria of (C4).

- Clearly, $k \ge 1$ and $n \ge 1$, so pen $(n, k) \ge 0$.
- $k_2 \log n k_1 \log n = (k_2 k_1) \log n \to \infty$, since $k_2 > k_1$.

A different kind of oracle (2B)

- Assumption (c) only requires us to assume that each $|Y_i| \le C_1$ and $|X_i| \le C_2$, for some C_1 and C_2 , and so we make these extra assumptions and validate (D4).
- We therefore have the following result:

For each k, define the k-sparse parameter space to be

$$\Theta_k^S = \{ \boldsymbol{\theta} \in \Theta : \boldsymbol{\theta} \text{ is } k\text{-sparse (has } k \text{ non-zero elements)} \}.$$

Assume that (a*), (b**), and (c) hold. If

$$\hat{\boldsymbol{\theta}}_{k,n} = \arg\max_{\boldsymbol{\theta} \in \Theta_{k}^{S}} - \frac{1}{2} \sum_{i=1}^{n} \left(Y_{i} - \boldsymbol{X}_{i}^{\top} \hat{\boldsymbol{\theta}}_{k,n} \right)^{2},$$

then $\lim_{n\to\infty} \mathbb{P}\left(\hat{k}_n \neq k_0\right) = 0$, where

$$\hat{k}_n = \min \left\{ \underset{k \in \{1, \dots, K\}}{\operatorname{arg min}} \left[\frac{1}{2n} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i^\top \hat{\boldsymbol{\theta}}_{k, n} \right)^2 + k \frac{\log n}{n} \right] \right\}.$$

Some final notes

- Note that there is a distinct lack of independence assumptions in the main theorems: Amemiya (1985, Thms. 4.1.1, 4.12, 4.1.6), Chen (2007, Thm. 3.1), and Baudry (2015, Thm. 8.1).
- Each of the theorems rely on the use of some law of large numbers, uniform law of large numbers, or central limit theorems.
- Generic law of large numbers for non-IID data can be found in Davidson (1994), Potscher and Prucha (1997), and White (2001).
- Generic uniform laws can be found in Andrews (1992),
 Potscher and Prucha (1997), and Jenish and Prucha (2009).

References I

- Amemiya, T. (1985). *Advanced Econometrics*. Harvard University Press, Cambridge.
- Andrews, D. W. K. (1992). Generic uniform convergence. *Econometric Theory*, 8:241–257.
- Atienza, N., Garcia-Heras, J., Munoz-Pichardo, J. M., and Villa, R. (2007). On the consistency of MLE in finite mixture models of exponential families. *Journal of Statistical Planning and Inference*, 137:496–505.
- Baudry, J.-P. (2015). Estimation and model selection for model-based clustering with the conditional classification likelihood. *Electronic Journal of Statistics*, 9:1041–1077.

References II

- Bickel, P. J. and Docksum, K. A. (2000). *Mathematical Statistics: Basic Ideas and Selected Topics*, volume 1. Prentice Hall, Upper Saddle River.
- Chen, X. (2007). *Handbook of Econometrics*, volume 6B, chapter Large sample sieve estimation of semi-nonparametric models, pages 5549–5632. Elsevier.
- Davidson, J. (1994). *Stochastic Limit Theory*. Oxford University Press, Oxford.
- Grenander, U. (1981). Abstract Inference. Wiley, New York.
- Hastie, T., Tibshirani, R., and Wainwright, M. (2015). *Statistical Learning with Sparsity: The Lasso and Generalizations*. CRC Press, Boca Raton.
- Huber, P. J. (1964). Robust estimation of a location parameter. *Annals of Mathematical Statistics*, 35:73–101.

References III

- Jenish, N. and Prucha, I. R. (2009). Central limit theorems and uniform laws of large nnumber for arrays of random fields. *Journal of Econometrics*.
- Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. *Annals of Mathematical Statistics*, 40:633–643.
- Osborne, M. R., Presnell, B., and Turlach, B. A. (2000). A new approach to variable selection in least squares problems. *IMA Journal of Numerical Analysis*, 20:389–404.
- Pfanzagl, J. (1969). On the measurability and consistency of minimum contast estimates. *Metrika*, 14:249–272.
- Potscher, B. M. and Prucha, I. R. (1997). *Dynamic Nonlinear Econometric Models: Asymptotic Theory*. Springer, Berlin.
- Serfling, R. J. (1980). Approximation Theorems Of Mathematical Statistics. Wiley, New York.

References IV

- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 58:267–288.
- Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis Of Finite Mixture Distributions. Wiley, New York.
- van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
- Vapnik, V. (2000). *The Nature of Statistical Learning Theory*. Springer, New York.
- Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.
- Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. *Annals of Mathematical Statistics*, 20:595–601.
- White, H. (2001). *Asymptotic Theory For Econometricians*. Academic Press, San Diego.

Thank you for your attention!

Email: h.nguyen5@latrobe.edu.au

Twitter: **@tresbienhien**

Website: https://hiendn.github.io