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Temporal data

Temporal data with regime changes

’ ! ? timo Goconey * ° ¢ K ! Time Socont) s ¢
m Data with regime changes over time
m Abrupt and/or smooth regime changes
Objectives
Temporal data modeling and segmentation
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Functional data

Many curves to analyze

B ) O g
Time (Second)

Railway switch curves  Yeast cell cycle curves

Phonemes curves Satellite waveforms
Objectives
m Curve clustering/classification (functional data analysis framework)

m Deal with the problem of regime changes — Curve segmentation
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Scientific context
m The area of statistical learning and analysis of complex data.

m Data : Complex data < heterogeneous, temporal /dynamical,
high-dimensional /functional, incomplete,...

m Objective: Transform the data into knowledge :
— Reconstruct hidden structure/information, groups/hierarchy of groups,
summarizing prototypes, underlying dynamical processes, etc

Modeling framework

m Latent variable models : f(z|0) = [ f(z,~2|0)dz
Generative formulation : z ~ q(z]6)
x|z ~ f(z|z,0)
< Mixture models : f(x]0) = Eszl P(z = k) f(z|z = k, 0x) and extensions
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Mixture modeling framework

Mixture modeling framework

m Mixture density: f(z|0) = Z,I::l 7 fr(x]0k)

m Generative model

z ~ M7, TK)
zlz ~ f(2]6.)

— Algorithms for inferring @ from the data
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Outline

Mixture models for temporal data segmentation

Mixture models for functional data analysis
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Outline

Mixture models for temporal data segmentation

m Regression with hidden logistic process

Temporal data with regime changes
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Mixture models for temporal data segmentation

Yy = (y1,...,Yn) a time series of n univariate observations y; € R observed at the
time points t = (t1,...,tn)

Times series segmentation context
m Time series segmentation is a popular problem with a broad literature

m Common problem for different communities, including statistics, detection,
signal processing, machine learning, finance

m The observed time series is generated by an underlying process
— segmentation = recovering the parameters the process’ states.

m Conventional solutions are subject to limitations in the control of the
transitions between these states

B — Propose generative latent data modeling for segmentation and
approximation

m < segmentation = inferring the model parameters and the underlying
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Regression with hidden logistic process

Let y = (y1,-..,Yn) be a time series of n univariate observations y; € R
observed at the time points t = (¢1,...,t,) governed by K regimes.

The Regression model with Hidden Logistic Process (RHLP) [1]

yi = Blmito.e ; €~N(01), (i=1,..,n)
Zi o~ M(l, Wl(ti;W), - ,ﬂ'K(ti; W))
Polynomial segments ,B;Fia:i with z; = (1,¢;,...,t)T with logistic probabilities
L
mk(ti;w) =P(Z; = klt;; w) = exXp (W1t + Wro)

Zfil exp (weit; + weo)

=

f(yilti; 0) = Zﬂk(ti;w)/\/(yi;ﬁffcuai)

k=1
m Both the mixing proportions and the component parameters are time-varying

T T
m Parameter vector of the model :0 = (w?,31,...,8k,0%,...,02)T
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lllustration

m Modeling with the logistic distribution allows activating simultaneously and
preferentially several regimes during time

exp (Mg (ti+yx))
T (ti; W) =
k( v ) S0 exp (Ae(ti+e))
1 1
0.8
5 06 =
:;:}‘1 9-5 Z
& 0.4 ¥ 0.4
02
0 0
a=B0 1 2 3 4 5 g=25 ! 2_ 3 4 5

= The parameter wy controls the quality of transitions between regimes
= The parameter wy is related to the transition time point

m Ensure time series segmentation into contiguous segments
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lllustration
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lllustration
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K =5 polynomial components of degree p = 2
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Parameter estimation: MLE via EM: EM-RHLP

m Parameter vector: 8 = (w',87,..., 8%, 0},...,02)"

m Maximize the observed-data Iog—likelihood'

IOgL 9 Y, t Zlome t,,W ylvﬁk ml7ak)
=1

m Complete-data log-likelihood

log Le(6;y,t,2) = Y > Ziplog[my(ti; )N (yi; B i, 07)]

i=1 k=1
Zi, = 1if Z; = k (i.e., when y; belongs to the kth component)
m The Q-function

Q0,019 = E{loch(e;y,t,Z”y’t;9(4)}

= ZZ’T log7r;.C tz,W)/\/'(yﬁBfmiaal%)}

i=1 k=1
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EM-RHLP

m E-Step: compute the posterior component memberships:

T(q 2
@ _ B(Z — k1. 0@ T (ti; w (q)) (yi;,@k( whak(q)) .
Tie. = P(Zi = Ky, t:07) = T(@) g, 520
Ze L me(t 5 WO)N (ys; By o, ")

m M-Step: compute the parameter update 87" = arg max Q(G,G(q))

](fH) = [Z (g)wl ] (g)ylml weighted polynomial regression
n
2(g+1) (q+1)
Oy = Z )
Zz 1 zk =1

n K
wlatD) arg maxzz (@) log 7. (t;; w)  weighted logistic regression
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EM-RHLP algorithm

M-Step: Weighted multi-class logistic regression

wlth = arg maxz ZT (D100 1, (ti; w)
i=1 k=1

m A convex optimization problem

m Solved with a multi-class Iteratively Reweighted Least Squares (IRLS)
algorithm (Newton-Raphson)

wiD) — w® _ |:82QW (w, 0(q)> ] B IQw (W, e(q))
owowT w=w(® ow w=w(®

m Analytic calculation of the Hessian and the gradient

m EM-RHLP algorithm complexity: O(Igwliris K>p®n) (more advantageous
than dynamic programming).
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Time series approximation and segmentation

Approximation: a prototype mean curve

g = Elyit:; 0] = Zwk b W)By

— A smooth and flexible approximation thanks to the the logistic weights

< The RHLP can be used as nonlinear regression model y; = f(t;;0) + ¢;
by covering functions of the form f(¢;;6) = Zszl m(ti; w)Br e [3]

Curve segmentation:
2, = arg max E[z|t;; W] = arg max m(t;; W)
1<k<K 1<k<K

Model selection Application of BIC, ICL

BIC(K, p) = log L(6) — 1% |CL(K, p) = log L.(8) — Y22 where
Vg :K(p+4) —2.
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Evaluation in modeling and segmentation

Approximation error as a function Computing time
of the speed of transitions
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Evaluation in approximation and segmentation
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Application to real data
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Outline

Mixture models for functional data analysis
m Mixture of piecewise regressions
m Mixture of hidden logistic process regressions
m Functional discriminant analysis
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Functional data analysis context

Many curves to analyze

B ) O g
Time (Second)

Railway switch curves  Yeast cell cycle curves

Phonemes curves Satellite waveforms
Objectives
m Curve clustering/classification (functional data analysis framework)

m Deal with the problem of regime changes — Curve segmentation
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Functional data analysis context

Data
m The individuals are entire functions (e.g., curves, surfaces)
m A set of n univariate curves ((z1,Y1),.- -, (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (Yi1, . - ., Yim,;) observed at the
independent covariates, (e.g., time ¢ in time series), (zi1,. .., Tim,)

Objectives: exploratory or decisional

Unsupervised classification (clustering, segmentation) of functional data,
particularly curves with regime changes: [4] [9], [C11] [16]

Discriminant analysis of functional data: [2], [5]

Functional data clustering/classification tools
m A broad literature (Kmeans-type, Model-based, etc)

= Mixture-model based cluster and discriminant analyzes
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Mixture modeling framework for functional data

m The functional mixture model:

K
flyle: @) = > apfulyla; @)

k=1

m fi(y|x) are tailored to functional data: can be polynomial (B-)spline
regression, regression using wavelet bases etc, or Gaussian process
regression, functional PCA

< more tailored to approximate smooth functions

— do not account for segmentation

Here fi(y|x) itself exhibits a clustering property via hidden variables (regimes):
Riecewise regression model (PWR)
Regression model with a hidden process (RHLP)
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Piecewise regression mixture model (PWRM) [9]

m A probabilistic version of the K-means-like approach of (?)

K

Ry,
Filzs®) =Y o[ T N 8Lz, 01,

k=1 r=1j€Ik,

PWR

Iy = (&kry Ekr11] are the element indexes of segment 7 for
component k

m — Simultaneously accounts for curve clustering and segmentation

m Parameter vector ¥ = (ay,...,ax_1,07,...,0% &7 .. ¢5)T with
T T
ok = (Bkl? cee 716]<;Rk70-]%17 .- '70-]%Rk)T and £k = (§k17 LI 7§k,Rk+1)T

Parameter estimation
Maximum likelihood estimation: EM-PWRM

Maximum classification likelihood estimation: CEM-PWRM
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Maximum likelihood estimation via EM: EM-PWRM

m Maximize the observed-data log-likelihood:

K
log L(¥ ZlOgZakH H N( yzyvﬁkrwzgaakr)
=1

- r= 1]€Ikr

m The complete-data log-likelihood

n K n K R
log L.(¥,z) = ZZZ““ logak+zzz Z Zik: log./\/(yij;,@;‘frwij,a,%r)
i=1 k=1 i=1 k=1r=1j €I,

m The conditional expected complete-data log-likelihood

n K R
!p d’l(q) Z Z Tl(lg) log Oék—FZ Z zk: Z’ng)log./\/’ yl]’ ngrmlw Ukr)
1=1 k=1 i=1 k=1r=L&l,

FAI1CEL CHAMROUKHI Unsupervised learning from high-dimensional and functional data



EM-PWRM algorithm
E-step: Compute the (Q)—function

— Compute the posterior probability that the ith curve belongs to component k:
(Q) (q)
f ,;JI
Tz(k =P(Z; = k|ywm“!p(Q)) — "(y | )

K

/=1 (Q)fk’(y |zi; ¥ ))

M-step: Compute the update ¥+Y = arg maxg QZ, W(Q))

n (a)
o) = Zmie (k=1 K)

® maximization w.r.t the piecewise regression parameters {£,,., By, 0%, } < a
weighted piecewise regression problem < dynamic programming:

n
a = [Eerxix] T zxwyw
i=1

2(g+1)  _ 1 (q+1) 2
ot = E Zm lys, — XirBEF
Zz 1 ZJEI(Q) T 1=1

Y,, are the observations of segment 7 of the ith curve and X, its design
matrix
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Maximum classification likelihood estimation: CEM-PWRM
m Maximize the complete-data log-likelihood w.r.t (¥, z) simultaneously
m C-step: Bayes' optimal allocation rule: 2; = arg max;<x<x 73 (%)

CEM-PWRM is equivalent to the K-means-like algorithm of ?:

K Ry
log LC(Z,W) X J(Z7 {ﬂkryjkr - ZZ Z Z Yij — ﬂkr

k=1r=14|Z;=k j€Ilk,
if the following conditions hold:
® o = & VK (identical mixing proportions);

m 07, =02 Vr and Vk; (isotropic and homoskedastic model);

B [, piecewise constant regime approximation

m Curve clustering: Z; = arg maxy Tik(@) with Tik(ﬁ“l) = }P’(Zi|a:i,yi;§7)
m Model selection: Application of BIC, ICL

m Complexity in O(IgmK Rnm?p3): Significant computational load for large m
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Simulation results

Cluster 1 Cluster 2

20 40 60 80 100 120 140
X

~X-EM-GNMM

> EM-PRM

& EM-PSRM
Kmeans-PWRM

; our EM-PWRM

=~ our CEM-PWRM|

1
3
£

Misclassification error rate (%)

0.4 06 08 1 1.2
Noise level variation : s

Figure: Misclassification error rate versus the noise level variation.
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Application to switch operation curves

Data set: n = 146 real curves of m = 511 observations.
Each curve is composed of R = 6 electromechanical phases (regimes)

CEM-PWRM partition

Power (Watt)
Power (Watt)

2 3 2 3 4 5
Time (Second) Time (Second)

Cluster 1 Cluster 2




Application to Tecator data

The Tecator data set! contains n = 240 spectra with m = 100
observations for each spectrum

Data considered in the same setting as in ? (six clusters, each cluster is
approximated by five linear segments (R = 5,p = 1))

absrobance

950
wavelength

'Tecator data are available at http://1ib.stat.cmu.edu/datasets/tecator.
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http://lib.stat.cmu.edu/datasets/tecator
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Topex/Poseidon satellite data

The Topex/Poseidon radar satellite data? contains n = 472 waveforms of
the measured echoes, sampled at m = 70 (number of echoes)

We considered the same number of clusters (twenty) and a piecewise linear
approximation of four segments per cluster as in 7.

Original data
250 T T T T

200

150

100

50

10 20 30 40 50 60 70

2Satellite data are available at
http://wuw.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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CEM-PWRM clustering
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Summary

m Probabilistic approach to the simultaneous curve clustering and optimal
segmentation

m Two algorithms: EM-PWRM and CEM-PWRM
m CEM-PWRM is a probabilistic-based version of the K-means-like algorithm ?

m If the aim is density estimation, the EM version is suggested (CEM provides
biased estimators but is well-tailored to the segmentation/clustering end)

m For continuous functions the PWRM in its current formulation, may lead to
discontinuities between segments for the piecewise approximation.

m This may be avoided by posterior interpolation as in ?.

m May lead to significant computational load especially for large time series.
However, for quite reasonable dimensions, the algorithms remain usable
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Mixture of hidden logistic process regressions [4]

m The mixture of regressions with hidden logistic processes (MixRHLP):

mi

k
fylzs ¥ Zak H Zﬂ'kr(xﬁwk)-/v(yij;/@grwjv Ul%r)

k=1 j=1r=1

RHLP

exp (Wkro + Wrr1Z;
T (@53 wWi) = P(Hiy = 7Z; = kW) = 5, (wr riy) ;
Yo exp (Wypro + W1 )

m Two types of component memberships:
— cluster memberships (global) Z;, = 1iff Z, = k
— regime memberships for a given cluster (local): H;;» = 1iff H;; =r
MixRHLP deals better with the quality of regime changes

m Parameter estimation via the EM algorithm: EM-MixRHLP
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MLE estimation via the EM algorithm

m The observed-data log-likelihood

n K m; Ryp
log L(®) =Y log > an [[ Y mer(as; wi)N (yis; Biras, o)
i=1 k=1 j=1lr=1
m The complete-data log-likelihood:
n K K Ry
log L.(¥) = Z Z Zir log ax + Z Z Z Zi Hijrlog [ﬂ'kr(ﬂﬁj; wi )N (yiﬁ Bz, UIET)]
=1 k=1 1,7 k=1r=1

m The conditional expected complete-data log-likelihood

Qo) = E [log Lo(®)|D; w@)]

n K K Ry
= ZZTL-(I? log o, + ZZZTz(f)’Yfﬁ log [mw(wj;wk)/\f (yij;lgzrmjv UI%T)] -

i=1k=1 i,j k=1r=1
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EM-MixRHLP algorithm

E-step

m The posterior cluster memberships:

(")f(yzlz by B
Sl o f (il Zi = b, wi;u'/;(j))

Ti(lg) = ]P( i = k|ymx17g’(q))

m the posterior regime memberships:

T
o (25, Wi N (yig; BV, 07 )

(a) (a)
Vige = P(Hij = 7|Z; = k,yij,t5; ") = i T 2
Z Z1 ﬂ'kr/(l'gawx(g )) (ywvﬁkr(/q) kig))

Computed directly (i.e, without a forward-backward recursion as in the
Markovian model).
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M-step of the EM-MixRHLP
M-step: calculate the update @9+ = arg maxy Q(¥,¥'?).
m Mixing proportions update: standard
1
o = 1<,g>, (k=1,...,K).
=1

m Regression parameters update: Analytic weighted least-squares problems

1
ao= [Z OxIwWEX] Z TXIW Ly,
i=1
+1
2 | i Wik - XTI
kr =

S0y i trace (W)
where W(q) = dlag('y( i1 =1,...,my).

ijr?
m Maximization w.r.t the logistic processes’ parameters {wy,}: solving
multinomial logistic regression problems = IRLS

m — EM-MixRHLP has complexity in O(IgmIiris K R3nmp?) (K-means like
algo. for PWR is in O(Ixm K Rnm?p3) — computationally attractive for
large m with moderate value of R.
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EM-MixRHLP clustering of simulated data
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Clustering switch operations

Clustering real curves of switch operations The data set contains 115
curves of R = 6 operations electromechanical process
K = 2 clusters: operating state without/with possible defect
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Clustering switch operations

Clustering real curves of switch operations The data set contains 115
curves of R = 6 operations electromechanical process
K = 2 clusters: operating state without/with possible defect
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Functional discriminant analysis

Supervised classification context

m Data: a training set of labeled functions ((z1,y1,¢1),. ., (@n, Y, 1))
where ¢; € {1,...,G} is the class label of the ith curve

m Problem: predict the class label ¢; for a new unlabeled function (z;,y,)

Tool: Discriminant analysis

Use the Bayes' allocation rule

6 = arg max P(C; = g)f(y;|zs; ¥y)
15956 38 P(Ci = g') f(y;]i; @)

based on a generative model f(y;|x;;¥,) for each group g

m Homogeneous classes: Functional Linear Discriminant Analysis [8]

m Dispersed classes: Functional Mixture Discriminant Analysis [5]
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Applications to switch curves

‘Sub-Class 1 of Class 1 ‘Sub-Class 2 of Class 1 Class 2.

B 3 O B 3 O
Time (Second) Time (Second)

& & g

02 02 02

B 3 0 B T 2 3 0 B 0
Timo (Second) Timo (Second)

B 3 0
Time (Second)

B 3 0
Timo (Second)

Approach Classification error rate (%) Intra-class inertia
FLDA-PR 11.5 10.7350 x 109
FLDA-SR 9.53 9.4503 x 109
FLDA-RHLP 8.62 8.7633 x 10°
FMDA-PRM 9.02 7.9450 x 109
FMDA-SRM 8.50 5.8312 x 107
FMDA-MixRHLP 6.25 3.2012 x 10°
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Summary

A full generative model for curve clustering and segmentation

The segmentation is smoothly controlled by logistic functions

m An alternative to the previously described mixture of piecewise regressions

more advantageous compared to approaches involving dynamic programming
namely when using piecewise regression especially for large samples.

m Could be extended to the multivariate case without a major effort
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Some ongoing research and perspectives

m Model-based co-clustering for high-dimensional functional data J

FunCtiona| |atent blOCk m0de| (FLBM) available soon on arXiv

Data: Y = (y,;): n individuals defined on a set Z with d continuous functional

variables defined on a set J where y;;(t) = p(z;;(t); B) + €(t), t defined onT.
m FLBM model:

JY|IX;w) = Y P(Z,W)f(Y|X,Z,W;0)
(z,w)EZXW

Z H ’/Tzik szuje H f(yij|wij§ Oe) Vit
G2

(z,w)EZXW i,k .5,k

m An RHLP is used as a conditional block distribution f(y;;|%i;; Oxe)

m Model inference using Stochastic EM
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Functional data are increasingly frequent

Chamroukhi and Nguyen [2018]
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Clustering of functional data

Tecator data set': n = 240 spectra with m = 100 observations for each spectrum
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Figure: Original data and clustering results from Chamroukhi [2016] for the data considered in
the same setting as in Hébrail et al. [2010] (six clusters, each cluster is approximated by five
linear segments (R = 5,p = 1))

1 .
Tecator data are available at http://1ib.stat.cmu.edu/datasets/tecator.

FAICEL CHAMROUKHI Unsupervised learning from high-dimensional and functional data


http://lib.stat.cmu.edu/datasets/tecator

Multivariate functional data are increasingly present

Measurements collected from different network elements (transceivers, cells, sites. .. )
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Figure: An example with d = 30 and n = 20 daily observations, from [Ben Slimen et al., 2016].
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This talk

Questioning

Clustering of highly multivariate functional data with two guidelines:
m (1) Mathematical guideline: warranty for estimation and selection
m (2) User guideline: keep a user-friendly meaning of the process

Both are important because clustering is a highly risky task. ..

Proposed answering

(1) Model-based co-clustering with (2) temporal curve segmentation

Novelty corresponds to combining both (1) and (2)
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Difference between clustering and co-clustering

m Simultaneous clustering of lines/indiv. (Z) and columns/var. (W)
m Can be used as a way to reduce dimensionality (var. — W)

=500, d =300, K =M =3
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Latent block model for co-clustering

[(X;w) = > P(Z,W;mp) [(X|Z,W;0)
~—_——

(zw)eZxW data kind dependent

m The latent variables Z and W are independent: P(Z, W) = P(Z)P(W) and iid:
P(Z) =T, P(2:) with z; ~ Multinomial(m1, ..., mx) where mp = P2z, = k)
P(W) = [T, P(w;) with w; ~ Multinomial(p1, ..., par) where pe = P(w; = £)

m Conditional independence: x;;|(zi, w;) L i (2!, w;!)

< binary data: binary [Govaert and Nadif, 2003, 2008; Keribin et al., 2012],

—> categorical data: multinomial [Keribin et al., 2014]

< contingency table: Poisson [Govaert and Nadif, 2003, 2006, 2008]

< continuous data: Gaussian [Lomet, 2012; Govaert and Nadif, 2013]

— functional data: functional PCA + Gaussian, see further [Ben Slimen et al., 2016]
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Inference for the latent block model

m Parameter estimation: maximum likelihood with variational block EM
algorithm (VBEM) [Govaert and Nadif, 2006, 2008]

m Number of blocks estimation: ICL criterion

Recent or ongoing theoretical waranties for consistency
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Functional data notation

m Data: (discretized) values of underlying smooth functions, not just vectors
m Data: A sample of n heterogeneous univariate curves (€1,y,),- .., (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (yi1,- .., Yim;) Observed at the
independent covariates, (e.g., time ¢ in time series), (zi1, ..., Tim;)
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Functional data modeling: “classical” approach

[Ramsay and Silverman, 2005] and many others

m Step 1: (x,y) decomposed into a finite basis of function (B-spline. .. )

m Step 2: functional principal components analysis (PCA) which is
performed as a usual PCA of the basis expansion coefficients ¢ using
a metric defined by the inner products between the basis functions

m Step 3: set a distribution of probability on c, typically Gaussian

It defines a distribution on c instead of y. .. J
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Functional data modeling: regression RHLP

Alternatively, use a segmentation via generative piecewise polynomial
regression modeling of f(y|x) [Chamroukhi et al.])

— Regression with Hidden Logistic Process (RHLP)

— See formula later

It gives a distribution on y and also a meaningful segmentation of the curve|
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RHLP for modeling different kinds of functions
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Multivariate functional data

Chamroukhi and Biernacki [2017]
m Data: Y = (y;;) a data sample matrix of n individuals defined on a
set 7 and d continuous functional variables defined on a set J.

m Each variable y,; is an univariate curve y;; = (i (t1), - - ,yij(tTij))
of T observations y(t) € R linked to covariates
@i = (zi5(t1), . .. ,a:ij(tTij)) at the points (t1,...,tr,;), typically a
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)

bb%%?

=

[

—
il

FAICEL CHAMROUKHI Unsupervised learning from high-dimensional and functional data



Embedding RHLP in co-clustering

Chamroukhi and Biernacki [2017]

m Co-clustering:

JYIXsw) = Y B(ZimP(Wip)f(YX,Z,W;0)
(z,w)EZXW
= > I ILe 11 sl 0ne) .
(2 w)EZXW i,k 3.t i,k N
RHLP
with parameter vector ¥ = (77, p7,0")7, where w = (m1,...,7x)7,

P = (pla"~7pM)Tr and 6 = (0{17"'79££7-~'70}"{M)T'
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Embedding RHLP in co-clustering

m RHLP: model the conditional data distribution for each block ki, assuming that
each functional variable y,; is governed by an Si.-state hidden process of y;;:

Tij Ske

(yz]|‘1’wvek€ Hzaklr 3 N(yu (t); IBermlj( )s Ulzlr)

t=1r=1
where the dynamical weights o’s are given by the multinomial logistic:

exp (§kero + Errerl) .
Zslkel exp (&kero + Ererat)

aker(t;€4,) =

< Can be seen as a generative piecewise polynomial regression model where the
transition points are smoothly controlled by logistic weights
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Parameter estimation: EM not feasible

m The complete-data log-likelihood:
log Lo(®) = log f(Y,Z, W, H|X;®)

Z zik log T + Z wje log pe

ik 3,0

+ Y znwjehe log [aker(t; Eed)N (yz‘j (1); Brer@is (t)mzzr)]

i,5,k,4,t,r

where (hir;t =1,...,T55,7 = 1,...,Ske) is a binary variable indicating from
which state the observation y;;(¢) within the block cluster k¢ is originated
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Parameter estimation: EM not feasible

m The E-Step computes the expected complete-data log-likelihood, given the
observed curves (X,Y), and the current parameter estimation ¥(%)

Qw,w) —E [log LC(W)’X7Y;‘P(G)]

= "P(zik = 1y, i) logmi + > P(wse = 1]y,;, ;) log pe
ik VR

+Y 0 Plzawse = Uy, i) P(her = 1zan, wie, is (), 735 (£)) X

1,7,k L,t,r

log [aker(t; £V (yij (t); Breyaij (1), 0 2%)]

Requires the calculation of the posterior joint distribution P(zixw;e = 1ly,;, ij)

{

does not factorize due to the conditional dependence on the observed curves of the
row and the column labels

{

= [Govaert and Nadif, 2008, 2013] proposed a variational approximation by relying on
the Neal and Hinton’s interpretation of the EM algorithm [Neal and Hinton, 1998].

— We adopt this variational approximation in our context
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Variational block EM algorithm

P(zikwje = 1y, ®i5) = Plzie = Ly, Tiz) x P(wje = 1|y, Ti5) J

Initialization: start from an initial solution at iteration ¢ = 0, and then alternate at the
(g + 1)th iteration between the following variational E- and M- steps until convergence:

VE Step Estimate the variational approximated posterior memberships:

2'(:+1)O(
| (@) 3 (@ 2
) eXp(Zj,z,t,r iy by 10g[aur(t;€§:2))/\f (yz‘j (£); Bl @i (1), ok )])
~(q+1)
Wiy o
~ > (a) 2
P eXp(Zi,k,t,r a0 hip 10g[akzr(t;€§$))/\/ (yw' (t); By @5 (1), o1 )])
~ T 2
R Vocal® (4 €40 (s (0 B, @i (1), 1), )
where: Z; = P(zin = Uy, xij), Wie = Plwje = 1|y,;, Tij),
hir = P(htr = 1|Zi7 Wi, Yij (t)v Tij (t))
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Variational block EM algorithm

M Step update the parameters estimates 0

+1 given the estimated posterior

memberships at the current iteration g + 1:

H

(q+1) _ X% ](ZH)
k

n

(g+1)
(q+1) _ 25 J?Z
Py = d

The update of each block parameters O, consists in a weighted version of the
RHLP updating rules:

(new) _ g(old) _ [62F<ske> -
174 174

} OF (&44)
0€1,,0¢], Epo= g(old) I3

maximisation of F(§,,) =3, ., ~fg)u~1ﬁ)h(q> log aker (t; €5p) W.rt &,

(otd) which is the IRLS
Ere=E&),

The regression parameters updates consist in analytic WLS problems:

—1
(g+1) _ ~(Q) ~(q) T A (2) B 5@ 5D xT A (@)
kér [Ez 7 X Az]erZJ:| Ei,j Zik W VL4 X A ]kryu
2D _ S 2D @S IA (yi X812 , , _
Oletr o) o where Xj; is the design matrix for
i Zin Wy trace(A;5 )
the ith curve, AE;II)W is the diagonal matrix whose diagonal elements are the

posterior segment memberships {hEgZT,t =1,..., Ty}
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Conclusion and perspectives

Conclusion

m A full generative framework for the cluster analysis and segmentation of
high-dimensional non-stationary functional data

m The model inference can be performed by a variational EM algorithm

Perspectives
m Replace Variational EM by an SEM algorithm, which does not use approximation

m Numerical experiments

m Package
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Thank you for your attention!
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