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Introduction

Recent advancements in medical and other fields of
scientific research has led to the collection of data of
unprecedented size and complexity.

One common statistical problem of interest in such
applications is to model a response (or output) variable Y
as a function of a small subset of large number of features
x = (x1, x2, . . . , xd )>.

In regression and classification, this is commonly referred
to as variable (feature) selection problem which aims at
building a sparse regression model or classifier.



Heterogeneous populations

The feature selection problem becomes even more
complex when the population of interest is made-up of
hidden sub-populations, i.e. a heterogeneous population:

 

Sub-population 1

Sub-population 2

Sub-population 3

Sub-population 4

A Heterogeneous Population 



Examples of heterogeneity in regression:

In motif discovery problem, where motif-gene expression
data are studied, the set of regulating motifs varies from
one group of genes to another.

In market segmentation research, consumers or suppliers
rate the quality of products. Markets can be segmented by
finding sub-groups with respect to the relationship between
rating and the features of a product.



Regression modeling in heterogeneous populations

When the population under study is heterogeneous:

1. Unobserved heterogeneity.

2. Relationship between Y and x = (x1, x2, . . . , xd )> varies
across sub-populations.

3. Each sub-population calls for its own regression model.

Finite mixture of regression (FMR) models provide a
natural tool to handle 1-3.



Finite mixture of regression (FMR) models

In an FMR model with K components, the conditional
density function of Y given x is

f (y ; x ,Ψ) =
K∑

j=1

πj f (y ; ηj(x), φj) ,

with a known link function ηj(x) = L(β0j + β>j x), and
βj = (βj1, . . . , βjd )>, for j = 1, . . . ,K .

The vector of all unknown parameters:

Ψ = (β01,β1, . . . , β0K ,βK , φ1, . . . , φK , π1, . . . , πK ).
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Sparse FMR models

Often, at the beginning of a study a long list of potential
explanatory variables x = (x1, x2, . . . , xd )> are available in
the data. But not all the xl ’s have effect on Y !

In practice, fitting a large and complex model via MLE is
undesirable (estimation problems, interpretation, ...).

We assume that the FMR underlying the data is SPARSE,
i.e. for some l = 1,2, . . . ,d , and j = 1,2, . . . ,K ,

βjl = 0

Thus, when fitting an FMR model to a data set some
FEATURE SELECTION decisions need to be made.
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Parameter estimation in FRM models: K is known

Maximum likelihood is the most popular method of
estimation in FMR models. (An alternative would be the
generalized method of moments).

The log-likelihood based on a sample of observations
(x i , yi), i = 1,2, . . . ,n, from a K-components FMR model:

`n(Ψ) =
n∑

i=1

log
{ K∑

j=1

πj f (yi ; ηj(x i), φj)

}
.

Maximum likelihood estimate (MLE) of Ψ:

Ψ̃n = argmaxΨ `n(Ψ)

But MLE does not provide a sparse model as postulated.
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ESTIMATION AND FEATURE SELECTION IN FMR MODELS



1) Estimation and feature selection when (K ,d) are small:

The Bayesian information criterion (BIC):

BIC(M) = `n(Ψ̃n,M)− 0.5 dim(M)× log n

for any FMR sub-model M ∈M.

BIC examines 2K×d submodel for selecting the best one.

Given the true K or a consistent estimator of K , and under
STANDARD REGULARITY CONDITIONS, the BIC selects the
true sparse FMR model with probability tending to one, as
n→∞. (CONSISTENT MODEL SELECTOR).

However, the BIC is computationally expensive for large
(K ,d), and thus alternative methods are required.
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2) Estimation and feature selection via regularization when (K ,d) are large:

Motivated by the regularization techniques such as the
LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001),
ADAPTIVE LASSO (Zou, 2006), and MCP (Zhang, 2010),
one may estimate Ψ using

A PENALIZED (REGULARIZED) LIKELIHOOD APPROACH

Simultaneous estimation and feature selection without an
exhaustive search of the model space. Thus,
computationally very efficient, compared to the BIC.

Theoretical properties to be discussed soon.
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The regularization approach:

Given a tuning parameter λ, the maximum penalized
likelihood estimate, Ψ̂n(λ), of Ψ is obtained by maximizing:

˜̀n(Ψ;λ) = `n(Ψ)−
K∑

k=1

πk

p∑
j=1

rn(βkj ;λ)

Examples of rn(β;λ): LASSO, ADLASSO, SCAD, MCP.



Continued . . .

SELECTION CONSISTENCY & ORACLE PROPERTIES studied:

Hui, Warton & Foster (2015); Städler, Bühlmann & van de
Geer (2010); Khalili & Chen (2007), Khalili (2010),
Khalili & Lin (2013).

In practice, a data-driven choice of the tuning parameter λ
is required. Khalili and Vidyashankar (2018) show that by
choosing λ based on BIC, say λ̂n, the regularized estimator
Ψ̂n(λ̂n) has the selection consistency property, and

Theorem 1 :
√

n

{[
I1 (Ψ0)−

p′′
n (Ψ0; λ̂n)

n

] (
Ψ̂1,n(λ̂n)− Ψ0

)
+

p′
n(Ψ0; λ̂n)

n

}
d−→ N (0, I1 (Ψ0)) .



STATISTICAL INFERENCE AFTER VARIABLE SELECTION



Statistical inference after variable selection

How about statistical inference such as testing hypotheses
for regression coefficients of a selected model?

Specifically, what statistical guarantees can be given to the
regression coefficients of a final selected model?

This is called

POST-SELECTION INFERENCE
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Motivation towards problems investigated in this talk

In functional genomics, it is known that the set of regulating
motifs differ from one subgroup of genes to another
(Conlon et al., 2003). Here, it is of interest to evaluate the
statistical significance of the selected motifs
within/between subgroups of genes.

In market segmentation, a goal is to identify subgroups of
consumers to target products and services for each
segment separately. Of interest is to evaluate the statistical
significance of the attributes between and within segments
of the market which is important for the industry (Wedel
and Kamakura, 2000).

Beyond the works of Redner & Walker (1984) and Chen
(2017), inferential aspects of FMRs are largely unknown.
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Post-selection inference

While SPARSIFICATION is useful in obtaining parsimonious
models, current methods for joint estimation and variable
selection are fraught with multiple challenges.

Specifically, due to the uncertainty inherited from variable
selection, one encounters a “random model” when
performing hypothesis tests; this must be distinguished
from the case when a model is pre-specified, as is typical
in classical statistical theory.

By a “random model”, we mean a model whose active
covariate set is chosen using a data-driven method.
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Invalid post-selection inference

Often the selection process is ignored and inference is
performed as if there has been no selection involved;

a standard text book practice which is not statistically valid.

“a quiet scandal in the statistical community” as phrased by
Breiman (1992).

The reason for invalidation of classical inference is that the
randomness induced by a data-driven model selection
procedure is not accounted for by classical theory.

Berk et al. (2013)



Example: effect of the variable selection on inference

This plot, taken from Berk et al. (2009), depicts the
sampling distribution (broken line) of β̂1/SE(β̂1) after a
model selection process in a linear regression model.

Clearly NOT a t-student distribution as it would be in a
classical setting.



continued...

This randomness needs to be taken into account for further
inference and the issue is part of a general post-model
selection inference problem:

Dijkstra and Veldkamp, 1988; Kabaila, 1995; Leeb and
Pöstcher, 2003–2008; Danilov and Magnus, 2004, among
others.

These authors remark that consistent model selectors
usually produce super-efficient estimators, where
non-uniformity (with respect to the true parameter Ψ0) is
observed in the convergence of finite-sample distributions
to their asymptotic counterparts.
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Valid post-selection inference in multiple linear and GLM regression

Recent developments on post-selection inference:

A significance test for the lasso: Lockhart et al. (2014)

Bootstrapping: Efron (2014)

De-sparsifying:

Zhang & Zhang (2014); van de Geer et al. (2014)

Screening & cleaning based on sample splitting:

Wasserman & Roeder (2009), Meinshausena et al. (2009)

Berk et al. (2013)

An integrative review of post-selection inference by:

Zhang et al (2018).



Note:

Since the true sparse model is unknown, formulation of
hypotheses concerning regression coefficients is unclear.

As in Meinshausen et al. (2009), we may assign p-values
to all the variables under study. However, rigorous
statistical justification of such an approach raises
fundamental questions about the meaning of the
underlying true model.

Thus, hypotheses of interest can only be formulated using
an estimated sparse model.
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Post-selection inference in sparse FMR models:

Our proposed method involves:

(i) estimating the active predictor set of the true sparse
model using a consistent model selector,

(ii) testing hypotheses for the regression coefficients
associated with the estimated active predictor set (EAPS).

The method asymptotically controls the family wise error
rate (FWER, the probability of rejecting at least one
hypothesis when it is true) at a pre-specified nominal level
(0 < α < 1), while accounting for selection uncertainty.

We also provide examples of consistent model selectors
and describe methods for finite sample improvements.
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The proposed method

Data: (x i , yi), i = 1,2, . . . ,n.

We split the data randomly into two parts D1n and D2n
(approximately of the same size n/2), where we use D1n to
select a sparse model via a consistent selector Tn yielding
an estimated active predictor set (EAPS), Ŝ(Tn).

Then, tests of hypotheses for regression coefficients of the
selected model are performed using D2n, based on
student-type statistics.
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Note:

While the above approach seems natural and plausible,
several subtle issues arise. First, we seek a consistent
model selection mechanism; that is, as n→∞, the
selected model estimates the true modelM0 with
probability approaching one.

However, for an estimated model, the dimension of the
parameter vector is random. Hence, direct comparison of
the estimates of the parameter vector of a selected model
to that of the “true model” is not feasible. To address this
issue, we introduce a DIMENSION MATCHING TECHNIQUE.
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Some notations

Tn is a consistent model selector: limn→∞ P(Tn =M0) = 1
, whereM0 is the true sparse FMR model.

We apply Tn to D1n and obtain an FMR sub-model with the
EAPS Ŝ(Tn) =

⋃K
j=1 Ŝj(Tn), where Ŝj(Tn) is the active set

selected by Tn in the j th mixture component.

The FMR sub-model associated with Ŝj(Tn) is given by

f (y ; x ,Ψ(Ŝ(Tn))) =
K∑

j=1

πj f (y ; η̃j(x), φj),

where η̃j(x) = L(βj0 +
∑

(j,l)∈Ŝj (Tn)
xlβjl), and Ψ(Ŝ(Tn)) is a

sub-vector of Ψ. We will use Ψ̃ to denote Ψ(Ŝ(Tn)).
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Some hypotheses of interest

For the selected model, we focus on the hypotheses:

(1) For all 1 ≤ j ≤ K and l ∈ Ŝj(Tn):

H0,jl : βjl = 0.

(2) For any fixed 1 ≤ j ≤ K , let Gj ⊆ Ŝj(Tn). For all l ∈ Gj :

H0,jl : βjl = 0.

(3) Let G = ∪K
j=1Gj , where Gj ⊆ Ŝj(Tn). For all (j , l) ∈ G:

H0,jl : βjl = 0.



To perform the tests:

We use D2n to obtain the MLE of Ψ̃, say Ψ̃n, by maximizing

`n(Ψ̃) =
∑

i∈D2n

log

 K∑
j=1

πjh(yi ; θ̃j(x i), φj)

 .
Turning to the hypothesis (1), compute the student-statistic

tjl,n = ¯̃βjl/SE( ¯̃βjl),

and SE( ¯̃βjl) comes from the observed “information matrix”.

We show that asymptotically Ψ̃n ∼ Gaussian; from this, for
small n, the distribution of tjl,n can then be approximated by
a t-distribution with n

2 − q̂n − (3K − 1) degrees of freedom,
where q̂n = |Ŝ(Tn)|. We account for multiple comparisons
using a Bonferroni-type adjustment.
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In summary, here is the Algorithm:

Step 1: Divide the data randomly into (D1n,D2n) of
approximately equal size n/2.

Step 2: Using D1n and a consistent mode selector Tn,
obtain the EAPS Ŝ(Tn).

Step 3: Using D2n, obtain the MLE Ψ̃n of the parameter Ψ̃
of the selected FMR sub-model corresponding to Ŝ(Tn) in
Step 2.

Step 4: Perform hypothesis testing using student-type
statistics for the regression coefficients of the estimated
sparse FMR model using D2n.



Theoretical justification: first we need some notation

Given D1n, let pjl be the p-value associated with the test in
(1) which is of size α/q̂n, for some α ∈ (0,1).

Define

S∗n(D1n,D2n) =
⋃

(j,l)∈Ŝ(Tn)

{
(j , l) : pjl ≤ α/q̂n

}
to be the set of all indices (j , l) ∈ Ŝ(Tn) for which the
hypothesis H0,jl is rejected.

Furthermore, let

E(D1n,D2n) = N0
⋂
S∗n(D1n,D2n)

denote the set of indices of regression coefficients of the
selected covariates whose corresponding null hypotheses
H0,jl ’s are rejected when they are true.



Theoretical justification: first we need some notation

Given D1n, let pjl be the p-value associated with the test in
(1) which is of size α/q̂n, for some α ∈ (0,1).

Define

S∗n(D1n,D2n) =
⋃

(j,l)∈Ŝ(Tn)
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hypothesis H0,jl is rejected.

Furthermore, let

E(D1n,D2n) = N0
⋂
S∗n(D1n,D2n)

denote the set of indices of regression coefficients of the
selected covariates whose corresponding null hypotheses
H0,jl ’s are rejected when they are true.



Theoretical justification: first we need some notation

Given D1n, let pjl be the p-value associated with the test in
(1) which is of size α/q̂n, for some α ∈ (0,1).

Define

S∗n(D1n,D2n) =
⋃

(j,l)∈Ŝ(Tn)
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...

AssumeWn andW are constant matrices of dimensions
m × κ̂n and m × κ0 (for some fixed m ≥ 1) respectively and
satisfying, as n→∞,

Wn[I1(Ψ0(q̂n))]W>n
p−→W[I1 (Ψ0)]W>, (1)

where I1(·) is the Fisher information matrix.

The validity of (1) is guaranteed by the consistency
property of the model selector Tn.

Note: κ0 = q0 + 3K − 1 and dim(Ψ̃n) ≡ κ̂n = q̂n + 3K − 1,
which could be different.
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Dimension matching:

Suppose (j , l) ∈ Ŝ(Tn)
⋂
N0, then set β0

jl = 0; otherwise, if

(j , l) ∈ Ŝ(Tn)
⋂
S0, then the true value is β0

jl .

(N0: true inactive set; S0: true active set).

Thus for every (j , l) ∈ Ŝ(Tn), the true value of βjl is defined.
This yields a new regression coefficients vector B10(q̂n)
which we refer to as the dimension-adjusted true
regression coefficients vector.

Now, we denote the new dimension-adjusted true
parameter vector by Ψ0(q̂n) = (π0,φ0,β

0
0,B10(q̂n)).
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Theorem 2

Let Tn be a consistent model selector and α ∈ (0,1) be a
nominal significance level. Under standard REGULARITY
CONDITIONS, the following hold:

(i) asymptotic normality: (as n→∞)√
n
2

{
Wn

(
Ψ̃n −Ψ0(q̂n)

)}
d−→ Nm

(
0, [WI1 (Ψ0)W>]−1) ;

(ii) FWER control:

lim sup
n→∞

P
(
E(D1n,D2n) 6= ∅

)
≤ α.
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Finite sample improvement: multiple splitting

The EAPS obtained from a single split of the data may not
be a good representative of the true active predictor set
due to the randomness in the split.

A natural option is to split the data into two parts B times:

(D1
1n,D1

2n), (D2
1n,D2

2n), · · · , (DB
1n,DB

2n).

Accordingly, the EAPS for the bth split is given by Ŝb; then
the EAPS based on all the splits is given by:

SB,n =
B⋃

b=1

Ŝb.

By the choice of the consistent model selector, as n→∞,
with probability tending to one, SB,n = S0, for any fixed B.
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the EAPS based on all the splits is given by:

SB,n =
B⋃

b=1
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Hypotheses of interest

Consider testing: H0,jl : βjl = 0, for all (j , l) ∈ SB,n.

As before, we use the test statistic

tb
jl,n = ¯̃βjl,b/SE( ¯̃βjl,b),

where b represents the split, for testing H0,jl at level α.

Let pb
jl denote the corresponding p-value obtained by using

the student-t approximation to the distribution of tb
jl,n.

Hence for every split b, we have q̂n,b = |Ŝb| p-values. For
those indices in SB,n but not in Ŝb we assign p-value one.

Multiple p-values: {pb
jl ,b = 1,2 · · ·B} which are correlated.

We then need a method to aggregate dependent p-values.
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p-value aggregation:

1. Aggregation using quantiles:

Qjl(δ;D1:B
1n ,D1:B

2n ) ≡ Qjl(δ) = Qδ(δ−1pb
jl : b = 1, ...,B),

where Qδ(·) is the δth empirical quantile function.

2. Averaging: Q̄jl(D1:B
1n ,D1:B

2n ) = B−1∑B
b=1 pb

jl and set

Q̄∗jl (D1:B
1n ,D1:B

2n ) ≡ Q̄∗jl = min(2Q̄jl(D1:B
1n ,D1:B

2n ),1).
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In summary, the algorithm for multiple splitting (Msplit) is:

Step 1: Divide the data set randomly into two parts B
times: (D1

1n,D1
2n), (D2

1n,D2
2n), · · · , (DB

1n,DB
2n).

Step 2: For each 1 ≤ b ≤ B, obtain the EAPS Ŝb, and set
SB,n =

⋃
1≤b≤B Ŝb.

Step 3: Using D1:B
2n , obtain the MLE of all the βjl of the

selected covariates in Step 2.

Step 4: Using the MLEs in Step 3, calculate the
student-type statistics and obtain the p-values.

Step 5: Use one of the aggregation methods to find the
overall p-values. And perform the tests.
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Theoretical justification:

We prove that the resulting quantities (Qjl(δ) and Q̄∗jl ) from
any of the aggregation methods are indeed p-values.

Furthermore, using the Qjl(δ)s, consider the sets

S∗B,n(δ) =
⋃

(j,l)∈SB,n

{Qjl(δ) ≤ α} , E(δ) = N0
⋂
S∗B,n(δ).

We show that:

lim sup
n→∞

P
(
E(δ) 6= ∅

)
≤ α

i.e. the FWER control !



Simulations:

The x i are generated from multivariate normal with mean
zero and an autoregressive-type covariance matrix Σ.
Given x i , the response Yi is generated from the mixture

πN(β10 + x>i β1, σ
2) + (1− π)N(β20 + x>i β2, σ

2)

with π = .45 and σ2 = 1,4,9,25,36, yielding the
signal-to-noise ratio (SNR) values:
25.8,6.45,2.87,1.03,0.72.

The d-dimensional vector of regression coefficients are

β>1 = (1.8,1.6,2.3,0.0,2.5,1.7,0.0, . . . ,0.0)

β>2 = (−1.7,0.0,2.5,−2.5,−2.0,0.0, . . . ,0.0)

containing q1 = 5 and q2 = 4 non-zero βj ’s, respectively.
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Performance measures:

The proposed method (Msplit) is compared with the
standard regularization techniques based on ADLASSO and
SCAD penalties (Theorem 1), using the following criteria:

1. Empirical family-wise error rate (EFWER): the empirical
probability of including at least one covariate with a true
zero regression coefficient;

2. Empirical expected number of true positives, E(TP):
average number of correctly estimated non-zero
regression coefficients;

3. Empirical expected number of false positives, E(FP):
average number of incorrectly estimated non-zero
regression coefficients.



Simulation results for the Gaussian model: K = 2,d = 30

E(TP) E(FP) EFWER
SNR Mixture Msplit SCAD ADLASSO Msplit SCAD ADLASSO Msplit SCAD ADLASSO

25.8 Com1 5.00 5.00 5.00 .000 .050 .000 .000 .045 .000
Com2 4.00 4.00 4.00 .000 .015 .000 .000 .015 .000
Both 9.00 9.00 9.00 .000 .065 .000 .000 .060 .000

6.45 Com1 4.84 5.00 5.00 .000 .520 .335 .000 .345 .275
Com2 4.00 4.00 4.00 .000 .355 .175 .000 .295 .165
Both 8.84 9.00 9.00 .000 .875 .510 .000 .510 .395

2.87 Com1 3.27 4.82 4.89 .000 .770 .955 .000 .485 .575
Com2 3.63 4.00 4.00 .000 .510 .580 .000 .335 .405
Both 6.90 8.82 8.89 .000 1.28 1.54 .000 .620 .740

1.03 Com1 1.43 3.93 4.08 .000 4.67 3.85 .000 .970 .955
Com2 1.33 3.46 3.46 .000 3.83 2.79 .000 .980 .935
Both 2.76 7.39 7.53 .000 8.49 6.64 .000 .995 .995

0.72 Com1 .905 3.67 3.77 .000 7.09 5.65 .000 1.00 1.00
Com2 .810 3.19 3.21 .000 6.14 4.75 .000 .995 1.00
Both 1.72 6.85 6.97 .000 13.22 10.4 .000 1.00 1.00



Simulation results for the Gaussian model: K = 2,d = 50

E(TP) E(FP) EFWER
SNR Mixture Msplit SCAD ADLASSO Msplit SCAD ADLASSO Msplit SCAD ADLASSO

25.8 Com1 5.00 5.00 5.00 .000 .095 .000 .000 .075 .000
Com2 4.00 4.00 4.00 .000 .030 .000 .000 .025 .000
Both 9.00 9.00 9.00 .000 .125 .000 .000 .100 .000

6.45 Com1 4.80 5.00 5.00 .000 1.04 .700 .000 .555 .495
Com2 4.00 4.00 4.00 .000 .680 .320 .000 .440 .270
Both 8.80 9.00 9.00 .000 1.72 1.02 .000 .715 .620

2.87 Com1 3.27 4.76 4.75 .000 1.21 1.56 .000 .560 .740
Com2 3.63 3.99 3.97 .000 .915 .940 .000 .480 .540
Both 6.89 8.75 8.72 .000 2.12 2.50 .000 .695 .850

1.03 Com1 1.55 3.45 3.91 .000 4.41 6.42 .000 .950 .995
Com2 1.58 3.09 3.36 .000 3.29 5.09 .000 .975 .990
Both 3.13 6.53 7.27 .000 7.70 11.5 .000 1.00 1.00

0.72 Com1 1.12 3.14 3.61 .000 6.94 9.12 .000 1.00 1.00
Com2 .970 2.82 3.16 .000 5.78 8.19 .000 .990 1.00
Both 2.09 5.96 6.76 .000 12.7 17.3 .000 1.00 1.00



Simulation results for the Gaussian model: K = 2,d = 70

E(TP) E(FP) EFWER
SNR Mixture Msplit SCAD ADLASSO Msplit SCAD ADLASSO Msplit SCAD ADLASSO

25.8 Com1 5.00 5.00 5.00 .000 .115 .005 .000 .095 .005
Com2 4.00 4.00 4.00 .000 .030 .000 .000 .025 .000
Both 9.00 9.00 9.00 .000 .145 .005 .000 .120 .005

6.45 Com1 4.71 5.00 4.95 .000 1.58 1.27 .000 .685 .660
Com2 4.00 4.00 4.00 .000 .975 .615 .000 .505 .420
Both 8.71 9.00 8.94 .000 2.55 1.89 .000 .780 .795

2.87 Com1 3.44 4.74 4.56 .000 1.61 2.65 .000 .655 .875
Com2 3.60 3.99 3.91 .000 1.24 1.51 .000 .565 .695
Both 7.03 8.73 8.47 .000 2.85 4.16 .000 .770 .960

1.03 Com1 1.90 3.36 3.78 .010 5.69 8.39 .010 .985 1.00
Com2 1.97 3.04 3.28 .000 4.76 7.29 .000 .985 1.00
Both 3.86 6.40 7.06 .010 10.45 15.7 .010 1.00 1.00

0.72 Com1 1.47 2.95 3.41 .010 9.23 12.7 .010 1.00 1.00
Com2 1.40 2.67 3.04 .005 7.98 11.3 .005 1.00 1.00
Both 2.87 5.62 6.45 .015 17.2 24.0 .015 1.00 1.00




